Все о тюнинге авто

Мембранная дистилляция опреснения воды. Опреснение морской воды в промышленных, домашних и походных условиях

Вода – главный источник жизни на планете, основа всего живого и всех организмов. Без нее человек не может долго прожить, однако, для питья годится далеко не всякая вода. Начнем с того, что она может быть загрязнена, в таком случае, Вы рискуете получить проблемы со здоровьем, поэтому, ее необходимо . А еще может случиться так, что вся вода, которая окажется в Вашем распоряжении, будет соленой, морской. Ну, мало ли, может Вы пережили кораблекрушение и дрейфуете на плоту в море. Или оказались на необитаемом острове. Или же Вы – гордый сын пустыни, в которой миллионы нефти и при этом нет пресной воды. На морской воде человек долго не протянет, так что же делать в такой ситуации? К счастью, человечество, очевидно, не от хорошей жизни, изобрело несколько способов опреснить морскую воду . Вам останется лишь выбрать из них наиболее подходящий.

Химический метод ионного обмена

Это относительно новый способ, который позволял открыть новые перспективы в области опреснения воды. Заключается он в прогоне воды через фильтры, содержащие в себе иониты. Иониты — это особые вещества, имеющие зернистую структуру и представляют собой органические кислоты и основания. Нерастворимы в воде и имеют свойство обменивать свои ионы на ионы, входящие в состав исходной воды. Между собой разделяются по типу обмениваемого иона на те, которые обменивают катионы, сюда относятся Са +2 , Mg +2 , Na+ и прочие, и те, что обменивают анионы, это вещества Cl-, SO -2 4 и прочие. Опресняемая вода при этом может содержать соли до трех грамм на литр.

Ионные фильтры бывают либо напорные, либо безнапорные. Их главное отличие в том, что напорные фильтры устанавливаются на подземные источники воды, не требующие предварительной очистки, а безнапорные – на поверхностные воды. Здесь уже требуется предварительная очистка и обеззараживание.

К ионитам предъявляются определенные требования. Они не должны изменять свойств воды и приводить к появлению вредных для здоровья человека веществ.

Электродиализ

Сводится к помещению воды в электрическое поле. При этом, катионы и анионы воды движутся к предварительно погруженному в нее катоду и аноду. Опресняющая установка оборудована специальными мембранами, проницаемыми для катионов и анионов. Это позволяет скапливать между этими перегородками опресненную воду. Изначально, все это было просто научным экспериментом. Однако, со временем, стоимость электроэнергии значительно снизилась, что сделало возможным применение электродиализа в крупных масштабах. Также, этот способ комбинируется с предыдущим, когда пропускающие мембраны изготавливаются с включением ионитов.

Указанные методы пригодны для промышленного опреснения. Используются в засушливых регионах, где наблюдается острая нехватка пригодной для питья воды. Эти способы требуют специального и весьма дорогостоящего оборудования и поэтому малопригодны в домашних, не говоря уже о походных, условиях. Здесь используются другие способы. Так, в домашних условиях, соленую воду можно дистиллировать и частично замораживать. А в походных – собирать конденсат с помощью открытого источника огня, солнечных лучей и топить снег и лед. Рассмотрим это более подробно.

Опреснение воды в домашних и походных условиях

Для преобразования морской воды в пресную в домашних условиях, используется дистилляция и заморозка . И то и другое приводит к изменению агрегатного состояния воды – либо превращению ее в пар, либо в лед, в результате которого вода избавляется от значительной части содержащихся в ней солей.

Дистилляция воды

Дистилляция заключается в нагреве воды, ее дальнейшему испарению и сбору конденсата в отдельной емкости. Лучше всего для дистилляции подходит самогонный аппарат. Существуют специальные дистиллирующие установки, которые работают при температуре, близкой к 100 градусам, попутно обеззараживая ее. Минусом дистиллируемой воды является то, что она не имеет ни вкуса ни запаха. Пить ее, мягко говоря, неприятно. Благо, некоторые современные установки имеют функцию добавления в такую воду минеральной воды, для придания хоть какого-то вкуса.

Конденсация воды

Если же самогонного аппарата нет под рукой, то можно воспользоваться методом конденсации . Соедините бутылку с водой с пустой бутылкой скотчем и уложите их в самое теплое или солнечное место. При этом, пустую бутылку следует установить чуть выше чем полную. Спустя определенное время будет собираться чистый конденсат, который будет пригоден для питья.

Для опреснения сгодится и широкий таз. В таз заливается вода, а в его середину устанавливается пустая емкость. Поверх всего этого натягивается пакет или пленка и герметично закрепляется. Посередине кладется небольшой груз, и вся эта конструкция размещается в самом теплом или солнечном месте. Спустя некоторое время в емкость будет собираться конденсат.

Замораживание воды

Замораживание соленой воды требует наличия морозильной камеры. Способ этот прост и легок, поскольку понятен и не требует сооружения каких-либо конструкций. Просто налейте в емкость соленую воду и разместите ее в морозилке. Затем, необходимо тщательно следить за ней, чтобы она не замерзла полностью. Пресной водой будет лишь лед на поверхности, и если емкость промерзнет целиком, то соль никуда не денется. Поэтому, следим за процессом и собираем образующийся ледок. Соль будет скапливаться и поэтому не нужно вычерпывать из емкости всю воду. Как только Вы опреснили две трети емкости с соленой водой, вылейте остаток и наберите новую.

Придется импровизировать, потому что вряд ли кто-то додумается взять с собой в поход портативный опреснитель. Но голь на выдумки хитра, поэтому, если Вы оказались в безвыходном положении, то включите свою фантазию – можно соорудить импровизированный дистиллятор из подручных средств, буквально из желудей и шишек и выпаривать воду на открытом огне, либо же воспользоваться способом с тазом, но вместо таза использовать вырытую яму.

Вкус опресненной воды

Да, вот это уже действительно проблема. Вода, которая прошла дистилляцию и перегонку не имеет ни вкуса ни запаха, она просто никакая. Конечно, она чистая и безопасная для здоровья, да, без жидкости человек долго не проживет, однако, употребление безвкусной пресной воды способно отбить волю к жизни даже у самого заядлого выживальщика. Разумеется, если Вы оказались один на необитаемом острове и из веток с палками смогли соорудить себе дистиллятор, а потом еще полдня ждали, пока он осилит перегнать кружку воды, то выбор-то у Вас небольшой: либо пить, что есть, либо искать нормальный , либо садиться и помирать от жажды. Помирать никому не хочется, а источником может и не оказаться, тогда придется пить, что есть. Вашу горькую участь можно слегка скрасить, добавив в жидкость что-то, что способно придать вкус или запах, да хоть ту же соленую воду, в разумных пропорциях.

ОПРЕСНЕНИЕ ВОДЫ - способ обработки высокоминерализованной воды с целью снижения или полного удаления растворенных в ней солей.

Недостаток пресной воды уже сейчас ощущается во многих странах мира. В СССР недостаток пресной воды ощущается на территории Туркмении, Казахстана, Узбекистана, Азербайджана, в ряде р-нов Северного Кавказа, Украины, Западной и Южной Сибири, Урала, Поволжья, где он в значительной мере может быть покрыт за счет опреснения имеющихся в этих р-нах значительных ресурсов высокоминерализованных подземных или морских вод.

О. в. осуществляется либо путем отделения собственно молекул воды, либо удалением ионов солей из р-ра. Исходя из этих особенностей, методы опреснения делятся на две группы: с изменением и без изменения агрегатного (фазового) состояния воды. К первой группе относятся термическое опреснение (дистилляция) и процессы с использованием холода (вымораживание), ко второй - химические, мембранные, экстракционные и адсорбционные, а также биол, методы.

Наиболее распространенными методами О. в. являются дистилляция, вымораживание, электродиализ, обратный осмос и ионный обмен.

Метод дистилляции (см.) основан на том, что при нагревании воды молекулы ее за счет теплового и колебательного движения приобретают энергию, достаточную для преодоления сил межмолекулярного притяжения, и образующийся пар при последующей конденсации дает опресненную воду. По характеру кипения и конструктивным особенностям различают опреснители кипящие, адиабатные (низкотемпературное кипение в вакууме), тонкопленочные, гигроскопические, гидрофобные и термодиффузионные. Применение дистилляции наиболее экономично при опреснении соленых (морских) вод для получения значительного количества пресной воды.

Опреснение методом вымораживания (естественного и искусственного) основано на использовании разницы температур замерзания пресной (0°) и солоноватых вод с минерализацией до 10 г/л (-1,6°). Метод естественного вымораживания используется в р-нах с холодным климатом. Искусственное вымораживание предусматривает охлаждение воды внесением гидрофобного хладоагента (бутанов, фреонов) непосредственно в опресняемую воду, испарение охлажденной воды в вакууме, использование в качестве хладоагента воды с более низкой температурой. Теоретические расчеты показывают, что метод вымораживания может быть одним из наиболее экономически выгодных. Однако технол, трудности, большая металлоемкость опреснителей и большой расход опресненной воды в технологическом процессе такого опреснения задерживают промышленное внедрение этого метода.

Метод электродиализа (электрохимический) основан на переносе ионов растворенных в воде солей в электрическом поле между электродами, погруженными в опресняемую воду; при этом катионы движутся к катоду, а анионы к аноду. Для предотвращения обратной реакции вблизи электродов устанавливают катио-но- и анионоселективные мембраны, к-рые не пропускают противоположно заряженные ионы. Метод электродиализа наиболее целесообразен для опреснения солоноватых вод (с минерализацией до 10 г/л).

Метод обратного осмоса основан на создании в системе с пористыми синтетическими мембранами давления, превышающего осмотическое; при этом происходит фильтрование молекул воды через мембраны и задержка солей.

Метод ионного обмена основан на последовательном фильтровании воды через фильтры, загруженные ка-тионо- и анионообменными смолами - ионитами (см.). Процесс опреснения проходит в две последовательные стадии: удаление катионов и анионов. Метод наиболее перспективен для опреснения маломинерализованных вод (с минерализацией до 2,5 г/л).

В зависимости от метода опреснения устанавливаются конкретные гиг. условия применения и режимов эксплуатации опреснительных установок, включающие методы предварительной подготовки исходной воды, дополнительной ее очистки, коррекции солевого состава, обеззараживания и кондиционирования опресненной воды, а также условия применения конструктивных и технол, материалов и реагентов.

Вода, получаемая различными методами опреснения, должна соответствовать действующему государственному стандарту на питьевую воду (см. Вода, санитарно-гигиенические требования), а также быть физиологически полноценной. Употребление для питьевых целей чистого дистиллята неблагоприятно отражается на состоянии жел.-киш. тракта и водно-солевого обмена человека. Согласно «Методическим указаниям по гигиеническому контролю за проектированием, строительством и эксплуатацией групповых систем сельскохозяйственного водоснабжения» № 2058-79, утвержденным М3 СССР, приняты минимально необходимый уровень минерализации (100 мг/л) и оптимальные уровни минерализации опресненной питьевой воды хлоридно-суль-фатного (200-400 мг/л) и гидрокарбонатного (250-500 мг/л) классов. Регламентируется также минимальный уровень кальция (1,5 мг-же/л), максимально (6,5 мг - экв/л) и минимально (0,5 мг - экв/л) допустимые уровни щелочности, минимально необходимый уровень жесткости (1,5 мг - экв/л), максимально допустимая концентрация бора (0,5 мг/л) и брома (0,2 мг/л).

Библиография: Апельцин И. Э. и Клячко В. А. Опреснение воды, М., 1968; Рахманин Ю. А. и др. Экспериментальные и клинико-физиологические материалы к обоснованию нижних пределов минерализации опресненной питьевой воды, Гиг. и сан., № 7, с. 16, 1975; Сидоренко Г. И. и Рахманин Ю. А. Опреснение как гигиеническая проблема в СССР, там же, № 12, с. 14, 1977.

Г. И. Сидоренко.

Дефицит пресной воды остро ощущается на территории более 40 стран, расположенных в засушливых областях земного шара и составляющих около 60 % всей поверхности суши. Мировое потребление воды в начале XXI века достигло 120-150 × 109 м3/год. Растущий мировой дефицит пресной воды может быть скомпенсирован опреснением соленых (солесодержание более 10 г/л) и солоноватых (2-10 г/л) океанических, морских и подземных вод, запасы которых составляют 98 % всей воды на земном шаре. В данной статье рассмотрены основы современных методов и технологий опреснения морской воды.

Пресная вода является ценной составной частью морской воды. Нехватка пресной воды все больше ощущается в индустриально развитых странах, таких как США и Япония, где потребность в пресной воде для бытовых нужд, сельского хозяйства и промышленности превышает имеющиеся запасы. В таких странах как Израиль или Кувейт, где уровень осадков очень низок, запасы пресной воды не соответствуют потребностям в ней, которые возрастают в связи с модернизацией хозяйства и приростом населения. В дальнейшем человечество окажется перед необходимостью рассматривать океаны как альтернативный источник воды.

Россия по ресурсам поверхностных пресных вод занимает первое место в мире . Однако, до 80 % этих ресурсов приходится на районы Сибири, Севера и Дальнего Востока. Всего около 20 % пресноводных источников расположено в центральных и южных областях с самой высокой плотностью населения и высокоразвитыми промышленностью и сельским хозяйством. Некоторые районы Средней Азии (Туркмения, Казахстан), Кавказа, Донбасса, юго-восточной части РФ, обладая крупнейшими минерально-сырьевыми ресурсами, не имеют источников пресной воды. Вместе с тем, ряд районов нашей страны располагает большими запасами подземных вод с общей минерализацией от 1 до 35 г/л, не используемых для нужд водоснабжения из-за высокого содержания растворенных в воде солей. Эти воды могут стать источниками водоснабжения только при условии их дальнейшего опреснения.

Важным параметром морской воды при опреснении является соленость, под которой подразумевается масса (в граммах) сухих солей (преимущественно NaCl) в 1 кг морской воды. Средняя соленость вод мирового океана постоянна и составляет 35 г/кг морской воды .Наряду с NaCl в морской воде содержатся K+, Mg2+, Ca2+, Sr2+, Br-, F-, H3BO3 (табл. 1), которые можно получать из морской воды в промышленных масштабах. Среди других веществ, содержащихся в морской воде в концентрациях от 1 млн долей (миллионная доля) до 0,01 млн долей, встречаются литий Li, рубидий Rb, фосфор P, йод J, железо Fe, цинк Zn и молибден Mo . Кроме этих элементов в морской воде обнаружено около тридцати других элементов в более низких концентрациях .

Высокая концентрация солей делает морскую воду непригодной для питьевых и хозяйственных целей. Поэтому ее необходимо опреснять, т.е. проводить обработку с целью снижения концентрации растворенных солей до 1 г/л. Опреснение воды может осуществляться химическими (химическое осаждение, ионный обмен), физическими (дистилляция, обратный осмос или гиперфильтрация, электродиализ, вымораживание) и биологическими методами с использованием способности некоторых фотосинтезирующих водорослей избирательно поглощать NaCl из морской воды .

За последние годы были также предложены новые альтернативные методы опреснения морской воды за счет воздействия ультразвуком, акустическими, ударными волнами, электромагнитными полями и др. .Многообразие существующих методов получения пресной воды объясняется тем, что ни один из них не может считаться универсальным, приемлемым для данных конкретных условий. Характеристики методов опреснения, получивших наибольшее практическое применение, приводятся ниже.

Химическое осаждение
При химическом способе опреснения в морскую воду вводят специальные осаждающие реагенты, которые при взаимодействии с растворенными в ней ионами солей (хлориды, сульфаты), образуют нерастворимые, выпадающие в осадок соединения. Вследствие того, что морская вода содержит большое количество растворенных веществ, расход реагентов весьма значителен и составляет примерно 3-5 % количества опресненной воды. К веществам, способным образовывать нерастворимые соединения с ионами натрия (Na+) и хлора (Cl-),относятся соли серебра (Ag+) и бария (Ba2+), которые при обработке соленой воды образуют выпадающие в осадок хлористое серебро (AgCl) и сернокислый барий (BaSO4). Эти реагенты дорогостоящие, реакция осаждения с солями бария протекает медленно, соли бария токсичны. Поэтому химическое осаждение при опреснении воды используется очень редко.

Дистилляция
Дистилляция воды (перегонка) основана на различии в составе воды и образующегося из нее пара . Процесс осуществляется в специальных дистилляционных установках-опреснителях путем частичного испарения воды и последующей конденсации пара. В процессе дистилляции более летучий компонент (низкокипящий) переходит в паровую фазу в большем количестве, чем менее летучий (высококипящий). Поэтому при конденсации образовавшихся паров в дистиллят переходят низкокипящие, а в кубовый остаток — высококипящие компоненты. Если из исходной смеси отгоняется не одна фракция, а несколько, дистилляция называется фракционной (дробной). В зависимости от условий процесса различают простую и молекулярную дистилляцию .

Дистилляционная опреснительная установка (рис. 1) состоит из испарителя 1, снабженного теплообменным устройством для подвода к воде необходимого количества теплоты; нагревательного элемента 2 для частичной конденсации пара, выходящего из испарителя (при фракционной дистилляции); конденсатора 3 для конденсации отбираемого пара; насоса 4; сборников дистиллята 5 и кубового остатка 6. Современные дистилляционные опреснители подразделяются на одноступенчатые, многоступенчатые с трубчатыми нагревательными элементами, или испарителями, многоступенчатые с мгновенным вскипанием и парокомпрессионные .

Например, многоступенчатый испаритель (рис. 2) состоит из ряда последовательно работающих испарительных камер с трубчатыми нагревательными элементами. Нагреваемая соленая вода движется внутри трубок нагревательного элемента, греющий пар конденсируется на внешней поверхности. При этом нагрев и испарение воды в первой ступени осуществляются паром рабочего котла, работающего на дистилляте; греющим паром следующей ступеней служит вторичный пар предыдущей испарительной камеры. Данная установка способна вырабатывать около 0,9 т пресной воды на 1 т первичного пара.

Расход тепла на получение 1 кг пресной воды в одноступенчатом дистилляционном опреснителе составляет около 2400 кДж.В опреснителях с мгновенным вскипанием (рис. 3) соленая вода проходит последовательно через конденсаторы, встроенные в испарительные камеры, нагреваясь за счет тепла конденсации, затем поступает в главный подогреватель и нагревается выше температуры кипения воды в первой испарительной камере, где происходит процесс кипения. Затем пар конденсируется на поверхности трубок конденсатора, а конденсат стекает в конденсатор и насосом откачивается потребителю. Неиспарившаяся вода перетекает через гидрозатвор в следующую камеру с более низким давлением, где она снова вскипает, и т.д. Рекуперация тепла фазового перехода в многоступенчатом опреснителе позволяет снизить расход тепла по сравнению с одноступенчатым дистилляционным опреснителем на 1 кг пресной воды до 250-300 кДж. Основным преимуществом многоступенчатых дистилляционных опреснительных установок является то, что на единицу первичного пара можно получить значительно большее количество обессоленной воды. Так при одноступенчатом испарении на 1 т первичного пара получают около 0,9 т опресненной воды, а на установках, имеющих 50-60 ступеней — 15-20 т опресненной воды. Удельный расход электроэнергии в дистилляционных установках составляет 3,5-4,5 кВт⋅ч/м3 дистиллята.

Осуществление любого варианта процесса дистилляции связано с большими затратами тепловой энергии, составляющими 40 % от стоимости получаемой воды (если проводить дистилляцию в вакууме, температура кипения воды понижается до 60 °C, и дистилляция требует меньших тепловых затрат). В качестве источников тепловой энергии используются атомные и тепловые электростанции. Сочетание дистилляционной установки с тепловой электростанцией на минеральном или ядерном топливе (т.н. «многоцелевая энергетическая установка») позволяет обеспечить промышленный район всеми видами энергетических услуг по минимальной себестоимости при наиболее рациональном использовании топлива. В пустынных южных районах и на безводных островах применяются солнечные опреснители, которые производят в летние месяцы около 4 л воды в сутки с 1 м2 поверхности, воспринимающей солнечную радиацию.

Эффективность работы дистилляционных испарителей ограничена образованием накипи в системе циркуляции горячего рассола. По мере выпаривания морской воды из дистилляционного опреснителя раствор соли становится более концентрированным и в конечном итоге осаждается на стенках аппарата в виде накипи из солей жесткости, состоящих, главным образом, из хлоридов и карбонатов кальция (CaCO3, CaCl2) и магния (MgCO3, MgCl2) , что ухудшает теплопроводность стенок теплообменника, приводит к разрушению труб и теплообменного оборудования. Это требует применения специальных антинакипных добавок, что существенно увеличивает энергозатраты на проведение дистилляции до 10 кВт⋅ч/м3 обессоленной воды. Поэтому в последние годы предложены другие способы опреснения морской воды, которые не связаны с необходимостью ее испарения и конденсации.

Ионный обмен
Метод основан на свойстве твердых полимерных смол разной степени сшивки, ковалентно связанных с ионогенными группами (иониты), обратимо обмениваться ионами растворенных в воде солей (противоионы) .В зависимости от заряда иониты подразделяются на положительно заряженные катиониты (H+) и отрицательно заряженные аниониты (OH-). В катионитах — веществах, аналогичным кислотам — анионы представлены в виде нерастворимых в воде полимеров, а катионы (Na+) подвижны и обмениваются с катионами растворов. В противоположность катионитам, аниониты по химической структуре являются основаниями, нерастворимую структуру которых образуют катионы. Их анионы (обычно гидроксильная группа ОН-) способны обмениваться с анионами растворов.

Процесс ионообменного опреснения воды заключается в последовательном прохождении воды через неподвижный слой ионита в периодическом процессе или противоточным движением воды и ионита в непрерывном процессе (рис. 4). В этом процессе катионы и анионы солей обрабатываемой воды последовательно связываются с ионитами, в результате происходит ее обессоливание. Соотношение ионита, анионита и катионита обычно составляет от 1:1 до 1,5:1,0 по массе .

Кинетика ионного обмена включает три последовательные стадии: перемещение сорбируемого иона к поверхности глобулы ионита (1), ионный обмен (2), перемещение вытесняемого иона внутри глобулы ионита и от его поверхности в растворе (3) .

На скорость ионного обмена влияют следующие факторы: доступность фиксированных ионов внутри каркаса ионита, размер гранул ионита, температура, концентрация раствора . Общая скорость процесса ионного обмена определяется совокупностью процессов, происходящих в растворе (диффузия противоионов к грануле и от гранулы ионита) и в ионите (диффузия противоионов от поверхности к центру гранулы ионита и в обратном направлении; обмен противоионов ионита на противоионы из раствора). В условиях, приближенных к реальным условиям очистки воды, лимитирующим фактором, определяющим скорость ионного обмена, является диффузия ионов внутри гранулы ионита.

Обменная способность ионообменных смол постепенно снижается, и, в конечном итоге, исчерпывается. В этом случае требуется регенерация раствором кислоты (катионит) или щелочи (анионит), что восстанавливает исходные химические свойства смол. Катионит регенерируется 5 %м раствором H2SO4, которую пропускают последовательно через катионит до появления кислой реакции. Удельный расход серной кислоты 55-60 г/гэкв сорбированных катионов. Анионит регенерируется 5 %м раствором CaCO3 или NaOH с расходом 70-75 г на 1 гэкв задержанных анионов.

Ионный обмен применяется для получения обессоленной и умягченной воды в тепловой и атомной энергетике и в промышленности; в цветной металлургии при комплексной гидрометаллургической переработке руд, в пищевой промышленности, в медицинской промышленности при получении антибиотиков и других лекарственных средств, а также для очистки сточных вод в целях организации оборотного водоснабжения. В настоящее время также разрабатываются ионообменные методы комплексного извлечения из океанской воды ценных минералов .

Промышленные аппараты для реализации ионного обмена подразделяются на три группы: установки типа смесителей-отстойников, установки с неподвижным и подвижным слоями ионита. Аппараты первого типа чаще всего используют в гидрометаллургии. В аппаратах с неподвижным слоем ионита исходные и обессоленные растворы подаются в одном направлении (поточные схемы) или в противоположных (противоточные схемы). Такие аппараты используются для ионообменной очистки растворов, при умягчении и обессоливании морской воды. В непрерывно действующих противоточных аппаратах подвижный ионит перемещается сверху вниз под действием силы тяжести. Конструктивно противоточные аппараты подразделяются на три группы: со взвешенным или кипящим слоем ионита, с непрерывным движущимся слоем ионита и с движущимся раствором через ионит. В зависимости от заданной степени обессоливания воды проектируют одно, двух и трехступенчатые ионообменные установки. Остаточное солесодержание при одноступенчатом ионообменном опреснении составляет 20 мг/л. Для получения воды с солесодержанием до 0,5 мг/л применяют установки с двухступенчатой схемой Н+ и ОН-ионирования.

Ионообменный способ опреснения воды имеет ряд достоинств: простота оборудования, малый расход исходной воды на собственные нужды (15-20 % производительности установки), малый расход электроэнергии, малый объем сбросных вод.

Недостаток ионообменного метода — сравнительно высокий расход реагентов, технологическая сложность процесса, который лимитируется исходным уровнем солесодержания обрабатываемой воды, определяющегося экономическими затратами. Рентабельность ионного обмена при опреснении воды обычно ограничивается исходным содержанием растворенных солей 1,5-2,5 г/л. Однако, при необходимости, когда себестоимость воды не играет существенной роли, этим методом можно опреснять воду с достаточно высоким солесодержанием. Продолжение в следующем номере.

1. Алекин О.А. Химия океана. — Л., 1966.
2. Хорн Р. Морская химия. — M., 1972.
3. Монин А.С. Океанология. Химия океана. — М., 1979.
4. Виноградов А.П. Геохимия океана. — М., 1989.
5. Kimm Y, Logan B.E., Electrodialysis Cells for Partial or Complete Seawater Desalination // Environmental Science and Technology, 2011, V. 12.
6. Абдулкеримов С.А., Богданов В.П., Годин С.М. Опытные исследования энергоинформационных воздействий излучений генератора продольных электромагнитных волн с водой // Электродинамика и техника СВЧ и КВЧ, №3(8)/2000.
7. Коган В.Г. Теоретические основы типовых процессов химической технологии. — Л., 1977.
8. Сийрде Э.К. Дистилляция. — М., 1991.
9. Гельперин Н.И. Основные процессы и аппараты химической технологии. — М., 1981.
10. Мосин О.В. Магнитные системы обработки воды. Основные перспективы и направления // Сантехника, №1/2011.
11. Кокотов Ю.А. Иониты и ионный обмен. — Л., 1980.
12. Горшков В.И., Сафонов М.С., Воскресенский Н.М. Ионный обмен в противоточных колоннах. — М., 1981.
13. Сенявин М.М. Ионный обмен. — М., 1981.
14. Батлер Дж.Н. Ионные равновесия. — Л., 1973.
15. Слесаренко В.Н. Современные методы опреснения морских и соленых вод. — М., 1973.
16. Дытнерский Ю.И. Обратный осмос и ультрафильтрация. — М.: Химия, 1978.
17. Свитцов А.А. Введение в мембранные технологии. — М.: «ДеЛи принт», 2006.
18. Орлов Н.С. Промышленное применение мембранных процессов. — М.: РХТУ им. Д.И. Менделеева, 2007.
19. Каграманов Ш.Г. Диффузионные мембранные процессы. Ч. 2. — М.: РХТУ им. Д.И. Менделеева, 2007.
20. Кульский Л.А. Опреснение воды. — К., 1980.
21. Орехов И.И., Обрезков Д.И. Вымораживание. Холод в процессах химической технологии. — Л., 1980.
22. Пап Л. Концентрирование вымораживанием. — М., 1982.
23. Алиев А.М., Юсифов Р.Ю., Кулиев А.Р., Юсифов Ю.Г. Применение методики гидратообразования для оценки обессоливания воды // Прикладная химия, №51(4)/2008.
24. Мосин О.В. Исследование методов биотехнологического получения аминокислот, белков и нуклеозидов, меченных стабильными изотопами 2Н и 13С с высокими уровнями изотопного обогащения. Автореф. дисс. к.х.н. — М.: МГАТХТ им. М.В. Ломоносова, 1996.

Планета Земля имеет огромные запасы воды, но основная ее часть входит в состав мирового океана и является соленой морской водой. Качество морской воды не позволяет использовать ее в чистом виде для промышленных сельскохозяйственных и тем более для пищевых целей. В составе морской воды в растворенном виде присутствует более 50 элементов системы Менделеева. Концентрация каждого элемента в отдельности крайне ничтожна, но все вместе они определяют показатель, из-за которого морскую воду называют соленой. Вода, пригодная для пищевых целей должна содержать солей не более 0,002 г/мл. Для достижения такой концентрации разработано большое количество способов, главная цель которых очистить морскую воду от солей и очистить ее. Главная задача разработчиков состоит в том, чтобы найти способ, который имел бы низкое потребление энергии и максимально полную очистку, после которой вода могла бы использоваться населением.

Способы опреснения

Сегодня существуют такие методы опреснения как дистилляция, обратный осмос, ионизация и электродиализ, которые можно использовать в промышленных масштабах.

  • Самым популярным способом является обычная или многостадийная дистилляция , при которой используется свойство закипания и парообразования при высоких температурах. Более половины опресненной воды получают именно таким способом.
  • Мембранная дистилляция , метод, при котором производится нагрев воды с одной стороны мембраны, которая пропускает только пар и образует из него пресную воду.
  • Метод обратного осмоса относительно дешевый, так как один вложенный доллар позволяет получить 16 тон пресной воды. Прилагая к морской воде давление, и продавливая ее через мельчайшие фильтры можно получить пресную воду с низким содержанием солей. Производительность мембраны и степень опреснения зависят от многих факторов: от количества содержания соли в исходном сырье, солевого состава, температуры и давления.
  • Использование электродиализа , при котором вода проходит через камеру с электродами, приводит к тому, что катионы и анионы распределяются на соответствующих электродах. Преимущество электродиализа состоит в том, что в процессе используются химически и термически стойкие мембраны, это дает возможность проводить опреснение при высоких температурах.
  • Газогидратный метод основан на способности углеродных газов при определенном давлении и температуре, создавать, с участием воды, соединения клатратного типа. Замороженную соленую воду обрабатывают гидрат образующим газом, после чего формируются кристаллы. После отделения их от рассола, кристаллы промывают и плавят, получая чистую пресную воду.

Для опреснения в южных регионах используют солнечные опреснители, в которых морская мода нагревается и испаряется. Существует и совершенно противоположный способ, при котором просто замораживают морскую воду, вернее замораживают и отделяют пресную, так как она замерзает быстрее, чем морская.

Промышленное опреснение

Недостаток в чистой питьевой воде испытывают в более чем 80 странах мира. Этот кризис спровоцирован ростом промышленного производства, ростом численности населения, ухудшением экологической обстановки во всем мире и планетарных изменений в климате. Мировое сообщество стоит на грани острого дефицита пресной воды. В такой ситуации особенно остро встает вопрос поиска альтернативных технологий по пополнению запасов пресной воды. Самым оптимальным считается путь опреснения вод мирового океана. Целесообразность этого пути ученые видят в том, что большое количество населения проживает в прибрежной зоне, имея доступ свободный к практически бесплатному ресурсу.

Опреснительные станции строят во многих странах, где ощущается недостаток в питьевой воде, например в Кувейте, Саудовской Аравии, Израиле, Объединенные Арабские эмираты, США (Калифорния). Самые мощные опреснительные установки расположены на Ближнем Востоке, например в Саудовской Аравии таких установок семь и каждая из них может производить до 400000 кубометров пресной воды в сутки. Рынок производства постоянно расширяется. Такие государства как Австралия, Испания и Алжир разрабатывают масштабные программы государственной поддержки по стимулированию промышленного производства пресной воды.

Россия в этом вопросе значительно отстает, рынок опреснительной промышленности у нас не развит. Климатическое и географическое расположение страны позволяет не стремиться в лидеры государств, вкладывающих огромные средства в опреснение воды. Но природа всегда оставляет последнее слово за собой и выносит свой вердикт. Наличие таких проблемных зон как Ставрополье, Волгоградская область, Прикаспийский регион и оренбургские степи не дает возможности забывать о дефиците пресной воды.

Альтернативные возможности

  • Антарктида дает надежду. Пока ученые ломают голову над новыми промышленными способами опреснения морской воды, другая часть светлых голов повернулась в сторону Антарктиды. Существует проекты, основывающиеся на идее транспортировки ледяных глыб с пресной водой прямо в Средиземное море. Расчеты показывают, что транспортировка льдины, размер которой равен футбольному полю, может быть осуществлен не менее чем за год, так как более высокая скорость сопровождающего каравана не возможна технически. Существуют и другие проекты, которые предусматривают измельчение реликтового айсберга и доставку его в измельченном виде в трюмах.
  • Регенерация воды. Для районов, которые расположены в большой отдаленности от морского побережья и где нет других источников пресной воды, найти альтернативные варианты довольно трудно. Здесь люди полагаются только на восстановление воды. Сбор сточных и поверхностных вод, возврат их в оборот может стать идеальным вариантом при получении воды. Этот способ используется при ирригации земель. Сбор дождевой воды, целенаправленный захват и последующее хранение в подземных хранилищах, позволяет решить проблему пусть даже в незначительной ее части.

Судовые опреснители

Для решения проблемы опреснения морской воды в мировом масштабе требуется согласие и взаимопонимание ученых, бизнесменов и политиков из разных стран. Более мелкие проблемы, такие как судовые опреснительные установки, решаются сегодня на уровне промышленных предприятий, занимающихся машиностроением. Судовые очистители-опреснители с мембранными фильтрами, это самое идеальное решения для оснащения морского судна в целях получения пресной воды в период длительного пребывания в плавании. Потребность в таких установках растет с каждым днем, и не только из-за того, что выросло количество судов, яхт и подводных лодок. Такие установки используются и в прибрежных зонах, в местности, где имеется повышенная солоноватость воды в устье реки или в озере.

Бытовые опреснители - дистилляторы

Бытовые опреснители используются для очистки и опреснения воды в бытовых условиях, в лабораториях, автосалонах, лечебных учреждениях и в косметических салонах. Бытовые дистилляторы работают по принципу круговорота воды в природе: нагревание, преобразование в пар, испарение и охлаждение. Этот метод позволяет получить мягкую и чистую воду.


Создан 15 дек 2013

Существующие разнообразные способы опреснения забортной морской воды можно разделить на две основные группы:

  1. опреснение без изменения агрегатного состояния жидкости (воды);
  2. опреснение, связанное с промежуточным переходом жидкого агрегатного состояния в твердое или газообразное (паровое).

Опреснение способами первой группы включает в себя такие виды, как химическое, электрохимическое, ультрафильтрация.

При химическом способе опреснения в воду вводят вещества, называемые реагентами, которые, взаимодействуя с находящимися в ней ионами солей, образуют нерастворимые, выпадающие в осадок вещества. Вследствие того что морская вода содержит большое количество растворенных веществ, расход реагентов весьма значителен и составляет примерно 3 - 5% количества опресненной воды. К веществам, способным образовывать нерастворимые соединения с натрием и хлором, относятся ионы серебра и бария, которые образуют выпадающие в осадок хлористое серебро и сернокислый барий. Эти реагенты дорогие, реакция осаждения с солями бария протекает медленно, соли ядовиты. Поэтому химическое опреснение используется редко.

При электрохимическом опреснении (электродиализе) применяют специальные электрохимические активные диафрагмы, состоящие из пластмассы, резины с наполнителем и анионитовых или катионитовых смол. Ванна с рассолом ограничена двумя диафрагмами: положительной и отрицательной. Под действием постоянного тока напряжением 110 - 120 В ионы солей, растворенных в воде, устремляются к электродам. Положительные катионы через катионопроницаемые диафрагмы, а анионы через анионитовую диафрагму проходят в крайние камеры, где встречаются с двумя пластинами: анодом и катодом. Встречаясь с одноименно заряженными диафрагмами, они остаются в этих камерах. В результате в промежуточных камерах оказывается обессоленная вода, которая стекает в отдельный сборник. Соли и рассолы из крайних камер отводятся за борт, а образующиеся газы (хлор и кислород) - в атмосферу.

Камеры, в которых опресняется вода, отделены от рассольных камер полупроницаемыми ионитовыми мембранами.

При достаточном количестве пар мембран между анодом и катодом расход электроэнергии зависит от солености морской и опресненной воды: чем меньше разница между ними, тем процесс протекает экономичнее. Поэтому злектродиализ целесообразно применять для опреснения слабосоленых вод при допустимом высоком солесодержании опресненной воды (500 - 1000 мг/л). На судах, где требования к солесодержанию достаточно высокие, электродиализные опреснители не находят применения. Опытная электродиализная установка эксплуатировалась на траулере «Ногинск».

Опреснение ультрафильтрацией или так называемым способом обратного осмоса состоит в том, что солевой раствор оказывается под давлением со стороны мембраны, проницаемой для воды и непроницаемой для соли. Пресная вода проникает через мембрану в направлении, обратном обычному осмотическому (когда пресная вода вследствие осмотического давления проникает через мембрану в солевой раствор). В существующих установках производительностью около 4 м 3 /сут соленая вода под давлением около 150 кгс/см 2 продавливается через мембраны ацетилцеллюлозного типа, обработанные перхлоратом магния для увеличения их водопроницаемости. С противоположной давлению стороны мембран установлены пористые бронзовые плиты, способные выдержать большое давление. При испытаниях установки с 1,5%-ным солевым раствором была получена вода с солесодержанием 600 - 1000 мг/л Сl. Применение ультрафильтрации как способа опреснения ограничивается малым сроком службы пленок-мембран и большими размерами фильтрующей поверхности.

К методам опреснения второй группы, относятся вымораживание и дистилляция, или термическое опреснение.

Опреснение вымораживанием основано на том, что в естественных природных условиях лед, образующийся в океанах и морях, является пресным. При искусственном медленном замораживании соленой морской воды вокруг ядер кристаллизации образуется пресный лед игольчатой структуры с вертикальным расположением игл льда. При этом в межигольчатых каналах концентрация раствора, а следовательно, и его плотность, повышаются, и он, как более тяжелый, по мере вымораживания оседает вниз. При растаивании игольчатого льда образуется пресная вода с содержанием солей 500 - 1000 мг/л Сl. При быстром замораживании рассол оказывается включенным в толщу льда, и сильное и интенсивное охлаждение приводит к замерзанию всей массы соленого раствора в единое ледяное тело.

Для лучшего опреснения морского льда иногда применяется искусственное плавление его части при температуре ~20°С. Вода, образующаяся при таянии, способствует более полному вымыванию солей из льда. Способ вымораживания достаточно прост и экономичен, но требует сложного и громоздкого оборудования.

Дистилляция, или термическое опреснение , - наиболее распространенный на морских судах способ получения пресной воды из забортной морской. Как известно, морская вода представляет собой раствор, состоящий из воды - летучего растворителя и солей - нелетучего растворенного в воде твердого вещества. Сущность дистилляции заключается в том, что забортную воду нагревают до кипения и выходящий пар собирают и конденсируют. Образуется пресная вода, называемая дистиллятом . Выпаривать воду можно как при кипении, так и без кипения. В последнем случае морскую воду нагревают при более высоком давлении, чем давление в камере испарения, куда направляется вода. Так как при этом температура воды превышает температуру насыщения, соответствующую давлению в камере испарения, то часть поступившей воды превращается в пар, который и конденсируется в дистиллят. Для парообразования используется теплота, содержащаяся в самой испаряемой воде, которая при этом охлаждается до температуры насыщения оставшегося рассола. Основное термодинамическое различие между процессами заключается в следующем: при кипящем процессе теплота подводится от внешнего источника и поддерживает температуру насыщения при данном постоянном давлении в испарителе, т. е. процесс является изотермическим ; при некипящем процессе теплота подводится к морской воде без кипения до температуры выше температуры насыщения, соответствующей давлению в испарителе, и, следовательно, процесс испарения идет за счет внутренней теплоты и является адиабатным . Недостатком термического опреснения избыточного давления является его малая экономичность: на получение 1 кг дистиллята расходовалось до 700 ккал, что соответствует выходу 10 - 12 т дистиллята на 1 т расходуемого топлива. Этот недостаток удалось преодолеть применением вакуумных испарителей с использованием утилизационной теплоты двигателей внутреннего сгорания и парогенераторов.

Дистилляция, как уже было отмечено, - основной способ опреснения морской воды, применяемый на судах промыслового флота, и поэтому в дальнейшем будут рассмотрены только опреснительные установки, работающие на термическом опреснении.

В настоящее время исследуются новые способы водоопреснения, в частности путем образования кристаллогидратов и при помощи гидрофобного теплоносителя.

Принцип кристаллогидратов заключается в выделении пресной воды из соленых растворов в форме кристаллов, которые в специальном расплавителе разлагаются на чистую воду и гидрат-агент. В качестве гидрат-агентов для повторного использования в процессе используются такие вещества, как метилбромидгидраты, метилхлоридгидраты, гидраты изо-бутана.

Сущность гидрофобного теплоносителя заключается в том, что различные смеси углеводородов, парафины, фторированные масла и другие вещества, инертные по отношению к воде и растворенным в ней солям, впрыскивают в теплонесущий дистиллят для нагрева. После этого дистиллят и теплоноситель разделяют и последний впрыскивают в морскую воду. При нагреве часть воды испаряется и образующийся пар в конденсаторе превращается в дистиллят. Гидрофобный теплоноситель отделяют от оставшегося после выпаривания рассола и возвращают в теплонесущий дистиллят для последующего нагрева.