Все о тюнинге авто

Электронные самоделки для радиолюбителей и начинающих электриков. Как сделать простую систему автоматизации для дома своими руками В состав интегрированной системы программирования входят …

Раз уж Вы решили стать электриком-самоучкой, то наверняка через небольшой промежуток времени Вам захочется сделать какой-нибудь полезный электроприбор для дома, автомобиля либо дачи своими руками. Одновременно с этим самоделки могут пригодиться не только в быту, но и изготовлены на продажу, к примеру, . На самом деле процесс сборки простых устройств в домашних условиях не представляет ничего сложного. Нужно всего лишь уметь читать схемы и пользоваться инструментом для радиолюбителей.

Что касается первого момента, то перед тем, как приступать к изготовлению электронных самоделок своими руками, Вам нужно научиться читать электросхемы . В этом случае хорошим помощником будет наш .

Из инструментов для начинающих электриков Вам пригодится паяльник, набор отверток, плоскогубцы и мультиметр . Для сборки некоторых популярных электроприборов может понадобиться даже сварочный аппарат, но это редкий случай. Кстати, в этом разделе сайта мы рассказали даже, и тот же сварочный аппарат.

Отдельное внимание нужно уделить подручных материалам, из которых каждый электрик новичок сможет сделать элементарные электронные самоделки своими руками. Чаще всего в изготовлении простых и полезных электроприборов используются старые отечественные детали: трансформаторы, усилители, провода и т.д. В большинстве случаев начинающим радиолюбителям и электрикам достаточно поискать все нужные средства в гараже либо сарае на даче.

Когда все будет готово – инструменты собраны, запчасти подысканы и минимальные знания получены, можно переходить к сборке любительских электронных самоделок в домашних условиях. Тут-то как раз, наш небольшой справочник Вам и поможет. Каждая предоставленная инструкция включает в себя не только подробное описание каждого из этапов создания электроприборов, но и сопровождается фото примерами, схемами, а также видео уроками, в которых наглядно показывается весь процесс изготовления. Если же Вы какой-то момент не поняли, то можете уточнить его под записью в комментариях. Наши специалисты постараются своевременно проконсультировать Вас!

Данная книга посвящена возможностям персонального IBM-совместимого компьютера по сопряжению с внешними устройствами через параллельный, последовательный и игровой порты, которые имеются практически в любом современном ПК. В качестве внешних устройств выступают ЦАП и ЛЦП, схемы управления электромоторами, трансиверы, модемы, различные индикаторы, датчики и пр.; приводятся тексты программ управления с подробными комментариями.

Книга предназначена для широкого круга читателей, интересующихся информатикой, электроникой и вычислительной техникой. Она будет полезна студентам технических вузов и колледжей в качестве учебного пособия при изучении аппаратной части ПК, а также радиолюбителям, которые стремятся наиболее полно использовать возможности домашнего компьютера. Начинающие программисты найдут здесь большое количество исходных текстов программ, а инженеры-электронщики почерпнут новые идеи для красивой реализации своих профессиональных проектов.

Книга посвящена проблемам сопряжения персонального компьютера с современными электронными устройствами при помощи параллельных, последовательных и игровых портов. В ней приведено много примеров, показывающих, как ПК может собирать информацию из окружающего мира и управлять внешними устройствами. Кроме того, предлагается программное обеспечение, написанное на языках Turbo Pascal и Visual Basic. Это сочетание аппаратной и программной части и раскрывает суть понятия "сопряжение компьютера".

Наиболее известны параллельный, последовательный и игровой порты, которые встроены практически в каждый ПК. Поэтому схемы, рассмотренные в данной книге, можно использовать со всеми типами компьютеров: настольными, портати иными, карманными IBM PC и совместимыми с ними, Macintosh, Amiga, PSTON1 и др.

Книга предназначена для широкого круга читателей, в числе которых: специалисты, использующие, компьютер для взаимодействия с внешним миром; программисты, которые разрабатывают аналогичное ПО; инженеры, мечтающие соединить цифровые электронные устройства с ПК; студенты, желающие на практике усвоить, как компьютер сопрягается с внешними устройствами; все, кто изучает новейшие способы применения компьютеров.

Год выпуска: 2001
Ан П.
Жанр:
Издательство: М.: ДМК Пресс
Формат: DjVu
Размер: 3,1 МБ
Качество: Отсканированные страницы
Количество страниц: 320

Программа для чтения книги: DjVuReader

Предисловие 9
1. Параллельный, последовательный и игровой порты 13
1.1. Параллельный порт 13
1.1.1. Разъемы 14
1.1.2. Внутреннее устройство 15
1.1.3. Программное управление 19
1.2. Последовательный интерфейс RS232 26
1.2.1. Последовательная передача данных 26
1.2.2. Разъем и кабель порта RS232 28
1.2.3. Внутреннее аппаратное устройство 29
1.2.4. Программное управление 35
1.3. Игровой порт 41
1.3.1. Разъем 42
1.3.2. Внутреннее аппаратное устройство 42
1.3.3. Программное управление 44

2. Необходимое оборудование 49
2.1. Источники питания 49
2.1.1. Источник питания постоянного тока 49
2.1.2. Источники питания +5, -5, +12, -12 В 50
2.1.3. Опорные напряжения 54
2.1.4. Преобразователи напряжения 55
2.1.5. Схемы источников питания с гальванической развязкой 56
2.2. Логические пробники 57
2.3. Цифровые и аналоговые генераторы сигналов 57
2.3.1. Цифровые генераторы сигналов 58
2.3.2. Аналоговые генераторы сигналов 60
2.4. Экспериментальные платы параллельного, последовательного и игрового портов 62
2.4.1. Экспериментальная плата параллельного порта 62
2.4.2. Экспериментальная плата последовательного порта 65
2.4.3. Экспериментальная плата игрового порта 67
2.4.4. Устройство экспериментальных плат 69
2.5. Средства разработки плат 71

3. Программы управления экспериментальными платами 75
3.1. Программное обеспечение для экспериментальной платы параллельного порта 76
3.1.1. Описание программы CENTEXP.PAS 76
3.1.2. Описание программы CENTEXP 79
3.2. Программное обеспечение для экспериментальной платы последовательного порта 84
3.2.1. Описание программы RS232EXP.PAS 84
3.2.2. Описание программы RS232EXP 88
3.3. Программное обеспечение для экспериментальной платы игрового порта 93
3.3.1. Описание программы GAMEEXP.PAS 94
3.3.2. Описание программы GAMEEXP 98
3.4. Программные библиотеки ресурсов 100

4. Расширение возможностей параллельного, последовательного и игрового портов 113
4.1. Расширение возможностей параллельного порта 113
4.1.1. Увеличение количества линий ввода/вывода при помощи микросхем с малой степенью интеграции 113
4.1.2. Увеличение количества линий ввода/вывода при помощи микросхемы 8255 116
4.2. Расширение возможностей последовательного порта 123
4.2.1. Преобразователи уровней RS232/TT/1 123
4.2.2. Увеличение количества линий ввода/вывода с помощью UART 124
4.2.3. Микросхема ITC232-A для сопряжения с последовательным портом 130
4.3. Увеличение количества линий игрового порта 132
4.4. Последовательно-параллельные преобразователи 132
4.5. Параллельно-последовательные преобразователи 134
4.6. Шифраторы и дешифраторы данных 135
4.7. Шина l2C 143
4.7.1. Принцип работы 144
4.7.2. Временные диаграммы работы шины l2C 145
4.7.3. Реализация на базе параллельного и последовательного портов... 146
4.7.4. Микросхемы, поддерживающие стандарт!2С 147
4.8. Последовательный периферийный интерфейс 147
4.9. Шина MicroLAN 147
4.10. Сопряжение между схемами ТТЛ и КМОП 148
4.11. Защита цифровых линий ввода/вывода 149

5. Управление внешними устройствами 152
5.1. Мощные устройства коммутации 152
5.1.1. Устройства коммутации на оптопарах 152
5.1.2. Транзисторные устройства коммутации 152
5.1.3. Устройства коммутации на основе схемы Дарлингтона 153
5.1.4. Устройства коммутации на полевых транзисторах 153
5.1.5. Устройства коммутации на МОП транзисторах с защитой 154
5.2. Устройства управления светодиодами 155
5.2.1. Стандартные светодиоды 155
5.2.2. Маломощные светодиоды 156
5.2.3. Многоцветные светодиоды 156
5.2.4. Инфракрасные светодиоды 157
5.3. Устройства управления реле 158
5.3.1. Реле с сухими контактами 158
5.3.2. Транзисторные устройства управления реле 159
5.4. Мощные управляющие интегральные микросхемы 159
5.4.1. Многоканальные управляющие интегральные микросхемы 159
5.4.2. Буферные устройства управления с защелками 160
5.5. Оптоэлектронные полупроводниковые реле на тиристорах 163
5.6. Устройства управления двигателями постоянного тока 164
5.7. Устройства управления шаговыми двигателями 166
5.7.1. Устройства управления четырехфазными шаговыми двигателями.... 166
5.7.2. Устройства управления двухфазными шаговыми двигателями 168
5.8. Управление звуковыми устройствами 169
5.8.1. Устройства управления пьезоэлектрическими динамиками, зуммерами и сиренами 170
5.8.2. Устройства управления громкоговорителями 170
5.9. Устройства управления дисплеями 172
5.9.1. Многоразрядные светодиодные дисплеи со встроенными схемами управления 172
5.9.2. Растровые светодиодные дисплеи со встроенными схемами управления 176
5.9.3. Многоразрядные светодиодные растровые дисплеи со встроенными схемами управления 178
5.9.4. Жидкокристаллические растровые дисплейные модули 181
5.10. Устройства управления мускульными кабелями 186

6. Измерение аналоговых величин 188
6.1. Аналого-цифровые преобразователи 188
6.1.1. АЦП с параллельным интерфейсом ввода/вывода 188
6.1.2. АЦП с последовательным интерфейсом ввода/вывода 205
6.1.3. Аналоговый процессор АЦП TSC500 217
6.2. Преобразователи напряжение-частота 221
6.2.1. Принципы преобразования напряжение-частота 221
6.2.2. Преобразователь напряжение-частота LM331 222
6.3. Цифровые датчики интенсивности света 224
6.3.1. Линейная матрица световых детекторов TSL215 227
6.3.2. Другие цифровые оптоэлектронные датчики 231
6.4. Цифровые датчики температуры 232
6.4.1. Термометр DS1620 233
6.4.2. Цифровой температурный датчик 238
6.4.3. Жидкокристаллические температурные модули 240
6.5. Цифровые датчики влажности 243
6.6. Цифровые датчики расхода жидкости 245
6.7. Цифровые датчики магнитного поля 247
6.7.1. Цифровой датчик FGM-3 индукции магнитного поля 247
6.7.2. Цифровой датчик магнитного поля 248
6.8. Радиосистемы точного времени 248
6.9. Клавиатура 253

7. Сопряжение компьютера с другими цифровыми устройствами 254
7.1. Цифро-аналоговые преобразователи 254
7.1.1. Простой ЦАП R-2R 254
7.1.2. ЦАП с параллельным вводом ZN428 254
7.1.3. ЦАП DAC0854 с последовательным интерфейсом ввода/вывода... 257
7.2. Цифровые потенциометры 261
7.3. Модули памяти 264
7.3.1. Модуль EEPROM объемом 2 Кб с последовательным вводом/выводом ST93C56C 264
7.3.2. EEPROM с шиной PC 270
7.4. Системы отсчета реального времени 275
7.5. Генераторы сигналов с цифровым управлением 281
7.5.1. Программируемый таймер/счетчик 8254 282
7.5.2. Генератор с числовым программным управлением HSP45102 288
7.5.3. Программируемый генератор синусоидальных колебаний ML2036 292

8. Сетевые приложения и удаленный доступ 293
8.1. Телекоммуникационные схемы 293
8.2. Интегральные схемы модемов 294
8.3. Радиосвязь 295
8.3.1. FM передатчик и приемник TMX/SILRX 296
8.3.2. AM передатчик и приемник AM-TX1/AM-HHR3 299
8.3.3. Эксперименты по передаче данных с помощью радиосвязи 299
8.4. Модули приемопередатчиков 302
8.4.1. Приемопередатчик BiM^^F 302
8.4.2. Требования к передаваемым последовательным данным 304
8.5. Модем для работы в бытовой электросети LM1893 305
8.6. Интерфейс RS485 306
8.7. Инфракрасные линии передачи данных 307

Список литературы 312
Предметный указатель 313

6 идей бытовой автоматизации для изготовления своими руками

(электронные схемы, описания работы)

Данный прибор служит для поддержания и регулирования температуры, например в системе отопления. Термостат простой, надежный, не критичен к месту размещения и не боится морозов, может быть использован в автоматике систем отопления (термостат для отопления, термостат для инкубатора, термостат комнатный, термостат для теплиц), в системе защиты от перегрева, пожарной сигнализации, как термостат для теплых полов. Нагрузкой термостата может служить тэн, установленный в котле отопления, лампы инкубатора, трехфазное реле, нагревательный элемент, нагревательный элемент теплого пола, газовый электроклапан типа GSAV15R 1/2", для поддержания температуры в погребе, для поддержания температуры в гараже.

Термостат содержит минимум элементов и как следствие очень надежен, не требует программирования. Схема термостата состоит из усилительного каскада на операционном усилителе AD822, термочувствительного диода, переменного резистора R2=10кОм для регулировки поддерживаемой температуры, R1 для установки гестерезиса.

Термостат позволяет поддерживать температуру от 15 до 95 градусов.

Плату с элементами и реле можно поместить в отдельную коробочку, которую как и термочувствительный диод закрепить непосредственно на котле. Диоды служат для отображения состояния термостата: диод 1 -- индикация питания, диод 2 -- индикация включения нагрузки.

Щиток позволит вам автоматизировать такие функции как включать и выключать электроприборы по сотовому телефону. Где бы вы не находились, достаточно лишь набрать номер и дождаться гудков. Чтобы выключить нагрузку, нужно позвонить на номер щитка с другого номера (например, вставить другую сим-карту). Мощность управляемой нагрузки ограничена типом применяемого реле.

Допустим, вы решили зимой посетить дачу, но чтобы по приезду не ждать несколько часов, пока она прогреется, просто набираете номер телефона, стоящего в щитке за пару часов до приезда.

В моем случае использовался телефон nokia3310 с синтезатором мелодий. Длятого, чтобы телефон в щитке включал нагрузку только от вашего телефона, нужно запрограммировать его звонок на ваш номер на определенную мелодию. когда вы позвоните на телефон щитка, телефон щитка проиграет определенную мелодию, которую расшифрует микроконтроллер. Роль детектора мелодий выполняет микрофон. Затем сигнал с микрофона поступает на вход детектора и дальше в контроллер. Чтобы обойтись без микрофонного усилителя и повысить помехоустойчивость, микрофон нужно приложить к динамику телефона непосредственно.

Естественно, микроконтроллер сначало надо запрограммировать.

Прошивка для контроллера находится здесь:

Прошивка настроена на прием трех импульсов на выключение и прием пяти импульсов на включение. Интервал между импульсами -- 265 мс.

Внешний вид устройства может быть таким:

С наступлением дачного сезона становится актуальным энергообеспечение дачных домов, там где нет централизованного подвода электроэнергии.

Один из альтернативных источников энергообеспечения служит солнечная батарея. Однако стоимость ее довольно высока, поэтому встает вопрос о более эффективном ее использовании. Наибольшая отдача батареи происходит при перпендикулярном ее ориентировании на солнце. Однако солнце не стоит на месте, оно перемещается с востока на запад. В данной статье описано устройство, автоматически ориентирующее батарею строго на солнце.

Идея упростить конструкцию системы ориентации солнечных батарей состоит в том, чтобы использовать готовый блок ориентации спутниковой антэнны, так называемый мотоподвес. Пользователю остается лишь прикрепить блок солнечных батарей к мотоподвесу, и по уровню сигнала, снимаемого с датчиков солнечной батареи, блок электроники сориентирует антенну точно на солнце.

Мотоподвес предназначен для отслеживания спутников, находящихся на геостационарной орбите (т. е. при повороте он не только вращает батарею, но и наклоняет ее, в результате чего батарея будет ориентирована точно на солнце. Сигнал для поворота формируется двумя фотодиодами, расположенными на солнечной батарее и ориентированными на дугу с углом между собой в 30 градусов. Питание схемы в начальный момент необходимо из резервного источника питания(аккумулятора). Рассмотрим детально процесс ориентирования.

Допустим батарея находится в промежуточном положении между западом и востоком. С восходом солнца на востоке левый фотодиод освещается сильнее правого, в результате чего на IN1 формируется логическая единица и батарея поворачивается на восток до освещения 2-го фотодиода и появления единицы на IN2, после чего мотор мотоподвеса останавливается. Затем, по мере продвижения солнца на запад правый фотодиод освещается сильнее, что приводит к появлению единицы уже на IN2 и мотор включается в другом направлении. Батарея как бы догоняет солнце. Переменные резисторы служат для подстройки чувствительности системы ориентации. Резистор R1 служит для ограничения тока коллектора мотора во время пуска. Конденсатор С3--керамический, служит для фильтрации помех искрения щеток.

Здесь рассказано, как предельно просто, не вдаваясь в сложности,используя минимум комплектующих, установить охранную или охранно-пожарную сигнализацию дома или коттеджа.

В настоящее время существует великое множество охранных систем. Большую часть из них

составляют электронные охранные системы, которые в свою очередь делятся на цифровые и аналоговые охранные системы и т.д. и т.п..

При этом оборудование постоянно усложняется, становится дороже.

От всего этого свободно это устройство.

Описание работы схемы:

При нарушении цепи охраны (в следствии проникновения) выключается реле P1, вследствии чего включается сигнальное устройство.

Используемые детали:

реле P1--любое реле с напряжением срабатывания 12 Вольт и током моммутирования 1А.Нам потребуется та пара контактов, которая срабатывает при отпускании реле. Сигнальное устройство--любое типа "Маяк" или от сигнализации автомобиля. Геркон--любой, выдерживающий ток 100 мА и напряжение 12 Вольт.

По конструктиву:

Герконами защищаем места, где наиболее вероятно проникновение (двери, окна, калитка, забор). Провод для периметра, сигнальное устройство и провода подвода питания необходимо замаскировать. Количество герконов не стоит превышать 10, иначе тяжее будет найти повреждение (как в елочной гирлянде).

Зачем это нужно: если открыть сайт lyngsat.com можно увидеть, насколько большое и разнообразное количество отечественных и зарубежных программ в отличном качестве передают спутники. Однако ручная перенастройка соспутника на спутник очень трудоемкое занятие и занимает много времени, а иногда и просто невозможно, если антена стоит в труднодоступном месте. Для этого и служит мотоподвес, в состав которого обычно входит мотор, механизм поворота, датчики крайнего положения и энкодер.

Для того чтобы управлять поворотом спутниковой антены, нужен мотоподвес с энкодером. Тогда подавая питание на мотоподвес и подсчитывая количество импульсов с энкодера вседа можно знать положение антены. Обычно подсчет импульсов ведется относительно некоторой точки, которую нужно определить заранее с помощью датчика крайнего положения. Назовем эту точку HOME, что по английски значит "дом". Далее определяем, сколько импульсов на градус делает наш энкодер. Это можно сделать, прочитав документацию мотоподвеса или рассчитав значение опытным путем. Далее выставляем антену в крайнее положение и подсчитывая количество импульсов выставляем ее на нужный спутник. Можно предварительно найдя какой-нибудь спутник, настраиваться относительно него. Например Eutelsat W4 at 36.0°E в Московской области находится строго на юге и вы на него настроены, количество импульсов енкодера--5 на градус. А Express AM1 at 40.0°E расположен на 4 градуса западнее(левее,если смотреть на юг.) То есть количество импульсов при повороте на Express AM1 at 40.0°E = 4*5=20. Включаем мотор и через 20 импульсов при правильной настройке мотоподвеса попадаем на Express AM1 at 40.0°E.

В данной конструкции подсчет импульсов, формирование включения моторов, запоминание позиции выполняет компъютер, а обмен сигналами выполняется через паралельный порт.

Управление мотоподвесом осуществляется с компьютера через паралельный порт. Программа написана на Делфи.

Для работы программы надо установить файл test.txt на диск С для записи параметров программы. Для работы так же требуется драйвер LPT, который должен находиться в той же дирректории, что и программа.

Этот механизм поможет уложить спать ребенка. Устройство состоит из актуатора, генератора, усилителя, блока питания и конечно самой кровати.

Принципиальная схема устройства показана на рисунке:

Микросхема L298 - мостовой драйвер. При появлении на входе IN1 логической единицы, а на IN2 логического нуля актуатор двжется в одну сторону, при противоположной раскладке - в другую. По входу ENA осуществляется управление скоростью актуатора.

Управление L298 осуществляется микроконтроллером ATmega16. Прошивка для него находится здесь.

Порядок работы следующий: при возникновении сигнала от микрофона (ребенок проснулся и закричал) включается актуатор, выполняет 20 качаний. Если после этого сигнал от микрофона продолжает идти, качание продолжается.

Регулировка скорости и частоты качаний регулируется с помощью резисторов R1, R2. Микрфон располагается в непосредственной близости от ребенка. Питание качалки осуществляется от любого стабилизированного источника на 12 В и ток 4 А.

Электронными устройствами сейчас никого не удивишь. Они в каждом доме. Поэтому неудивительно и то, что с малых лет многие начинают интересоваться электроникой. В таком случае чаще всего стараются построить какое-либо более или менее сложное устройство, пользуясь описаниями конструкций. Но первые попытки редко дают хорошие результаты.

А ведь электроника совсем не трудная. Все электронные устройства, даже самые большие, всегда составлены из простых элементов. Их существует всего несколько видов. Они лишь соединяются между собой по разным схемам. Именно поэтому работают один раз так, а другой раз иначе - в зависимости от намерений конструктора. Но это еще не все: большие электронные устройства составляются из многих маленьких основных схем. Так, как из деревянных кубиков: часто из одинаковых кирпичиков можно построить даже огромный, великолепный дворец.

Поговорим о строительстве вычислительных машин, усилителей, счетчиков импульсов, и о многом другом, о том, что строится из основных элементов: резисторов, трансформаторов, конденсаторов, транзисторов и интегральных схем которые лежат в основе радиоэлектроники. В современной высокоразвитой электронной промышленности заняты десятки тысяч человек. Одни выращивают высокочистые полупроводниковые кристаллы. Другие изготавливают на высокоточном оборудовании интегральные микросхемы. Третьи разрабатывают их топологию. Четвертые заняты программным обеспечением ЭВМ. Есть масса занятий для пятых, шестых и т.д. Но все они вместе возводят одно величественное здание современной электронной техники, без которой уже не может обойтись ни одна отрасль народного хозяйства.

Любое современное здание, например жилой дом, строится из ограниченного набора блоков - панелей, балок, перекрытий. Расположив эти блоки в различных сочетаниях, можно построить и низкое длинное здание и, возвышающийся как башня над всем городом, небоскреб. Даже при ограниченном наборе основных блоков архитекторам предоставлена широкая свобода для творчества. Так и в современной электронике из сравнительно небольшого числа основных базовых блоков - «кирпичиков»: транзисторов, конденсаторов, резисторов и т. д. можно создать бесчисленное множество : радиоприемники, телевизоры, устройства записи и воспроизведения звука, передачи данных, ЭВМ и многие - многие другие. Что же эти элементы из себя представляют?

Резистор - структурный элемент электрической цепи, основное функциональное назначение которого оказывать известное сопротивление электрическому току с целью регулирования тока и напряжения. Резистор имеет основные параметры:


Номинальное сопротивление – это сопротивление конкретного прибора, измеряется в Омах. Для каждой цепи необходимы свои наборы номиналов.

Рассеиваемая мощность – это разделение резисторов по максимальной мощности, измеряется в Ваттах.

Допуск – это погрешность сопротивлений резистора, указывается в процентах.

Сейчас можно встретить как микроминиатюрные SMD резисторы, так и мощные в керамическом корпусе. Существуют невозгораемые, разрывные и прочие, перечислять их можно очень долго, но основные параметры у них одинаковые.

Варикап - конденсатор в виде полупроводникового диода, ёмкость которого нелинейно зависит от приложенного к нему электрического напряжения. Эта ёмкость представляет собой барьерную ёмкость электронно - дырочного перехода изменяется от единиц до сотен пико фарад. Параметры варикапа:

Максимальное обратное постоянное напряжение – это максимальное напряжение, которое можно подавать на варикап. Измеряется в Вольтах.

Номинальная емкость варикапа – это емкость варикапа при фиксированном обратном напряжении.

Коэффициент перекрытия – это отношение максимальной емкости к минимальной.

Кроме обычных варикапов используют сдвоенные и строенные варикапы с общим катодом. Чаще всего они используются в радиоприемных устройствах, где необходимо одновременно перестраивать входной контур и гетеродин с помощью одного потенциометра. Но делают и сборки нескольких варикапов в одном корпусе.

Транзистор - полупроводниковый триод - радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами, позволяющий входным сигналам управлять выходным током в электрической цепи. Обычно используется для усиления, генерации и преобразования электрических сигналов.


Трансформатор – один из самых распространённых электротехнических устройств, как в бытовой технике, так и в силовой электротехнике. Назначение трансформатора заключается в преобразовании электрического тока одной величины в другую, большую, или меньшую. Трансформаторы предназначены для преобразования переменного, импульсного и пульсирующего тока. Если подвести к трансформатору постоянный ток, то получится, лишь раскалённый кусок провода.


Конденсатор – один из самых распространённых радиоэлементов. Роль конденсатора в электронной схеме заключается в накоплении электрического заряда, разделения постоянной и переменной составляющей тока, фильтрации пульсирующего тока и многое другое.
Основные параметры конденсатора:


Номинальная емкость – это мощность, на которую рассчитан конденсатор, при номинальном напряжении, номинальной емкости и номинальной частоте. Измеряется в Фарадах.

Номинальное напряжение – это значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах.

Допуск – это отклонение величины реальной емкости от указанной на корпусе, указывается в процентах.

Из весьма скромного набора основных элементов, имеющихся в распоряжении радиотехников, конструируют все. От электронного дверного звонка, исполняющего мелодию, до сложных синтезаторов современных групп; от зарядного устройства для телефона, до персонального компьютера, способного сыграть с вами партию в шахматы. Но в современном строительстве используются не только кирпичи, но и всевозможные блоки.

Так что же это за «блоки-кирпичики»? Интегральные микросхемы. Некоторые из них и по форме напоминают маленький пластмассовый кирпичик с двумя гребенками выводов. По своему функциональному назначению интегральные микросхемы делятся на две основные группы: аналоговые, или линейно-импульсные, и логические, или цифровые, микросхемы. Аналоговые микросхемы предназначаются для усиления, генерирования и преобразования электрических колебаний разных частот, например, для приемников, усилителей, а логические для использования в устройствах автоматики, в приборах с цифровым отсчетом времени, в компьютерах.

Интегральная микросхема представляет собой миниатюрный электронный блок, содержащий в общем корпусе транзисторы, диоды, резисторы и другие активные и пассивные - элементы, число которых может достигать нескольких десятков тысяч. Одна микросхема Может заменить целый блок радиоприемника, компьютера и электронного автомата. «Механизм» наручных электронных часов, например, - это всего лишь одна микросхема.


Основным элементом аналоговых микросхем являются транзисторы. Разница в технологии изготовления транзисторов существенно влияет на характеристики микросхем. Микросхемы на полевых транзисторах самые экономичные - по потреблению тока.

Что находится внутри радиоэлектронного элемента? Сырьем для них может служить обычный песок. Не верите? Песок представляет собой окись кремния SiO2 . А кремний является основой для производства подавляющего большинства полупроводниковых элементов электроники. Разумеется, нужны и другие материалы: пластмасса, керамика, алюминий, серебро и даже золото. Разрезать аккуратно и точно кремниевую пластинку лучше всего алмазной пилой.

Все это привело к появлению микромодулей, схем на тонких пленках, молекулярных блоков - это все различные пути уменьшения габаритов электронных устройств. Так как перед современной техникой ставятся сложные задачи, для выполнения которых требуют от электронных устройств тысячи часов безотказной работы. Только миниатюризация может позволить улучшить качества и надежность элементов. Чем меньше габариты электронных устройств, чем монолитней их структура, тем легче они противостоят ударным и вибрационным нагрузкам. Моноблоки не боятся высоких температур, а надежность их просто поразительна - они могут работать без отказа десятки тысяч часов!

Миниатюризация влияет и на радиоэлементы схем, упрощая их производство, уменьшая размеры, увеличивая производительность и надежность, что помогло человеку создать всю архитектуру техники, необходимую для любой отрасли его деятельности.


Полный обзор мощного китайского преобразователя 12-220 1000 ватт. Испытания инвертора, разборка и осмотр печатной платы с деталями.