Все о тюнинге авто

Уравнение вида cos x. Тригонометрические уравнения — формулы, решения, примеры

С центром в точке A .
α - угол, выраженный в радианах.

Определение
Синус (sin α) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине гипотенузы |AC|.

Косинус (cos α) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AB| к длине гипотенузы |AC|.

Принятые обозначения

;
;
.

;
;
.

График функции синус, y = sin x

График функции косинус, y = cos x


Свойства синуса и косинуса

Периодичность

Функции y = sin x и y = cos x периодичны с периодом 2 π .

Четность

Функция синус - нечетная. Функция косинус - четная.

Область определения и значений, экстремумы, возрастание, убывание

Функции синус и косинус непрерывны на своей области определения, то есть для всех x (см. доказательство непрерывности). Их основные свойства представлены в таблице (n - целое).

y = sin x y = cos x
Область определения и непрерывность - ∞ < x < + ∞ - ∞ < x < + ∞
Область значений -1 ≤ y ≤ 1 -1 ≤ y ≤ 1
Возрастание
Убывание
Максимумы, y = 1
Минимумы, y = -1
Нули, y = 0
Точки пересечения с осью ординат, x = 0 y = 0 y = 1

Основные формулы

Сумма квадратов синуса и косинуса

Формулы синуса и косинуса от суммы и разности



;
;

Формулы произведения синусов и косинусов

Формулы суммы и разности

Выражение синуса через косинус

;
;
;
.

Выражение косинуса через синус

;
;
;
.

Выражение через тангенс

; .

При , имеем:
; .

При :
; .

Таблица синусов и косинусов, тангенсов и котангенсов

В данной таблице представлены значения синусов и косинусов при некоторых значениях аргумента.

Выражения через комплексные переменные


;

Формула Эйлера

Выражения через гиперболические функции

;
;

Производные

; . Вывод формул > > >

Производные n-го порядка:
{ -∞ < x < +∞ }

Секанс, косеканс

Обратные функции

Обратными функциями к синусу и косинусу являются арксинус и арккосинус , соответственно.

Арксинус, arcsin

Арккосинус, arccos

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Захарова Людмила Владимировна
МБОУ «Средняя общеобразовательная школа № 59» г. Барнаула
учитель математики
[email protected]

1 Простейшие тригонометрические уравнения

Цель: 1. Вывести формулы решений простейших тригонометрических уравнений вида sinx =a, cosx=a, tgx=a, ctgx=a;

2. Научиться решать простейшие тригонометрические уравнения с помощью формул.

Оборудование: 1) Таблицы с графиками тригонометрических функций у= sinx, у=cosx, у=tgx, у=ctgx; 2) Таблица значений обратных тригонометрических функций; 3) Сводная таблица формул для решения простейших тригонометрических уравнений.

План урока-лекции :

1 .Вывод формул корней уравнения

а ) sinx =a,

б ) cosx=a ,

в ) tgx=a ,

г) ctgx=а .

2 . Устная фронтальная работа по закреплению полученных формул.

3 . Письменная работа по закреплению изученного материала

Ход урока.

В алгебре, геометрии, физике и других предметах мы сталкиваемся с разнообразными задачами, решение которых связано с решением уравнений. Мы изучили свойства тригонометрических функций, поэтому естественно обратиться к уравнениям, в которых неизвестное содержится под знаком функций

Определение: Уравнения вида sinx = a , cosx = a , tgx = a , ctgx = а называются простейшими тригонометрическими уравнениями.

Очень важно научиться решать простейшие тригонометрические уравнения, так как все способы и приемы решения любых тригонометрических уравнений заключается в сведении их к простейшим.

Начнем с того, что выведем формулы, которые «активно» работают при решении тригонометрических уравнений.

1.Уравнения вида sinx =a .

Решим уравнение sinx =a графически. Для этого в одной системе координат построим графики функций у=sinx и у=а.

1) Если а > 1 и а sin х=а не имеет решений, так как прямая и синусоида не имеют общих точек.

2) Если -1а а пересечет синусоиду бесконечно много раз. Это означает, что уравнение sinx=a имеет бесконечно много решений.

Так как период синуса равен 2, то для решения уравнения sinx=a достаточно найти все решения на любом отрезке длины 2.

Решением уравнения на [-/2; /2] по определению арксинуса х= arcsin a , а на х=-arcsin a . Учитывая периодичность функции у=sinx получим следующие выражения

х = -arcsin a +2n, n Z.

Обе серии решений можно объединить

Х = (-1) n arcsin a +n, nZ.

В следующих трех случаях предпочитают пользоваться не общей формулой, а более простыми соотношениями:

Если а =-1, то sin x =-1, х=-/2+2n

Если а =1, то sin x =1, x =/2+2n

Если а= 0, то sin x =0. x = n,

Пример: Решить уравнение sinx =1/2.

Составим формулы решений x=arcsin 1/2+ 2n

Х= - arcsin a+2n

Вычислим значение arcsin1/2. Подставим найденное значение в формулы решений

х= 5/6+2 n

или по общей формуле

Х= (-1) n arcsin 1/2+n,

Х= (-1) n /6+n,

2. Уравнения вида cosx=a .

Решим уравнение cosx=a также графически, построив графики функций у= cosx и у=а .

1) Если а 1, то уравнение cosx=a не имеет решений, так как графики не имеют общих точек.

2) Если -1a cosx=a имеет бесконечное множество решений.

Найдем все решения cosx=a на промежутке длины 2 так как период косинуса равен 2.

На решением уравнения по определению арккосинуса будет х= arcos a. Учитывая четность функции косинус решением уравнения на [-;0] будет х=-arcos a .

Таким образом решения уравнения cosx=a х=+ arcos a + 2 n,

В трех случаях будем пользоваться не общей формулой, а более простыми сотношениями:

Если а =-1, то cosx =-1, x =-/2+2n

Если а =1, то cosx =1, x = 2n,

Если а=0, то cosx =0. x =/2+n

Пример: Решить уравнение cos x =1/2,

Составим формулы решений x=arccos 1/2+ 2n

Вычислим значение arccos1/2.

Подставим найденное значение в формулы решений

X=+ /3+ 2n, nZ.

    Уравнения вида tgx=a .

Так как период тангенса равен , то для того чтобы найти все решения уравнения tgx=a , достаточно найти все решения на любом промежутке длины . По определению арктангенса решение уравнения на (-/2; /2) есть arctga . Учитывая период функции все решения уравнения можно записать в виде

х= arctg a + n, nZ.

Пример: Решите уравнение tg x = 3/3

Составим формулу для решения х= arctg 3/3 +n, nZ.

Вычислим значение арктангенса arctg 3/3= /6, тогда

Х=/6+ n, nZ.

Вывод формулы для решения уравнения с tgx = a можно предоставить учащимся.

Пример.

Решить уравнение ctg х = 1.

х = arcсtg 1 + n, nZ,

Х = /4 + n, nZ.

В результате изученного материала учащиеся могут заполнить таблицу:

«Решение тригонометрических уравнений».

уравнение

Упражнения для закрепления изученного материала.

    (Устно) Какие из записанных уравнений можно решить по формулам:

а ) х= (-1) n arcsin a +n, nZ;

б ) х=+ arcos a+ 2 n?

cos x = 2/2, tg x= 1 , sin x = 1/3, ctg x = 3/3, sin x = -1/2, cos x= 2/3, sin x = 3 , cos x = 2.

Какие из перечисленных уравнений не имеют решений?

    Решите уравнения:

а) sin x = 0; д) sin x = 2/2; з) sin x = 2;

б) cos x = 2/2; е) cos x = -1/2; и) cos x = 1;

г) tg x = 3; ж) ctg x = -1; к) tg x = 1/ 3.

3. Решите уравнения:

а) sin 3x = 0; д) 2cos x = 1;

б) cos x/2 =1/2; е) 3 tg 3x =1;

г) sin x/4 = 1; ж) 2cos(2x+ /5) = 3.

При решении данных уравнений полезно записать правила для решения уравнений вида sinв x =a , и с sinв x =a , | a |1.

Sinв x =a, |a|1.

в х = (-1) n arcsin a +n, nZ,

х= (-1) n 1/в arcsin a +n/в , nZ.

Подведение итогов занятия:

    Сегодня на занятии мы вывели формулы для решения простейших тригонометрических уравнений.

    Разобрали примеры решения простейших тригонометрических уравнений.

    Заполнили таблицу, которую будем использовать для решения уравнений.

Домашнее задание.

2 Решение тригонометрических уравнений

Цель: Изучить методы решения тригонометрических уравнений:1) приводимых к квадратным;2) приводимых к однородным тригонометрическим уравнениям.

Развивать у учащихся наблюдательность при применении различных способов решения тригонометрических уравнений.

    Фронтальная работа с учащимися .

    Назовите формулы корней тригонометрических уравнений cos x=a , sin x=a , tgx = a , ctg x = a .

    Решите уравнения (устно):

cos x=-1, sin x=0, tgx =0, ctg x=1, cos x=1,5, sin x=0.

    Найдите ошибки и подумайте о причинах ошибок.

cos x=1/2, х=+ /6+2k, kZ.

sin x= 3/2, х= /3+k, kZ.

tgx = /4, x=1+ k, kZ.

2. Изучение нового материала.

На данном занятии будут рассмотрены некоторые наиболее часто встречающиеся методы решения тригонометрических уравнений.

Тригонометрические уравнения, приводимые к квадратным.

К этому классу могут быть отнесены уравнения, в которые входят одна функция (синус или косинус) или две функции одного аргумента, но одна их них с помощью основных тригонометрических тождеств сводится ко второй.

Например, если cоsх входит в уравнение в четных степенях, то заменяем его на 1- sin 2 x, если sin 2 x, то его заменяем на 1-cos 2 x.

Пример.

Решить уравнение: 8 sin 2 x - 6sin x -5 =0.

Решение: Обозначим sin x=t, тогда 8t 2 - 6t – 5=0,

D= 196,

T 1 = -1/2, t 2 = -5/4.

Выполним обратную замену и решим следующие уравнения.

Х=(-1) к+1 /6+ k, kZ.

Так как -5/4>1, то уравнение не имеет корней.

Ответ: х=(-1) к+1 /6+ k, kZ.

Решение упражнений на закрепление.

Решить уравнение:

1) 2sin 2 x+ 3cos x = 0;

2) 5sin 2 x+ 6cos x -6 = 0;

3) 2sin 2 x+ 3cos 2 x = -2sin x;

4) 3 tg 2 x +2 tgx-1=0.

Однородные тригонометрические уравнения.

Определение: 1) Уравнение вида a sinx + b cosx =0, (а=0, в=0) называется однородным уравнением первой степени относительно sin x и cos x.

Решается данное уравнение с помощью деления обеих его частей на cosx 0. В результате получается уравнение atgx+ b=0.

2) Уравнение вида a sin 2 x + b sinx cosx + c cos 2 x =0 называется однородным уравнением второй степени, где a, b, c какие-либо числа.

Если а=0, то уравнение решаем делением обеих частей на cos 2 x 0. В результате получаем уравнение atg 2 x+ btgx+с =0.

Замечание: Уравнение вида a sin mx + b cos mx =0 или

a sin 2 mx + b sin mx cos mx + c cos 2 mx =0 также являются однородными. Для их решения обе части уравнения делят на cos mx =0 или cos 2 mx =0

3) К однородным уравнениям могут быть сведены различные уравнения, которые первоначально не являются такими. Например, sin 2 mx + b sin mx cos mx + c cos 2 mx = d , и a sinx + b cosx = d . Для решения этих уравнений необходимо умножить правую часть на « тригонометрическую единицу» т.е. на sin 2 x + cos 2 x и выполнить математические преобразования.

Упражнения на закрепление изученного материала:

1) 2sin x- 3cos x = 0; 5) 4 sin 2 x – sin2x =3;

2) sin 2x+ cos2x = 0; 6) 3 sin 2 x + sinx cosx =2 cos 2 x ;

3) sin x+ 3cos x = 0; 7) 3 sin 2 x- sinx cosx =2;

4) sin 2 x -3 sinx cosx +2 cos 2 x =0

3.Подведение итогов урока. Домашнее задание.

На данном занятии в зависимости от подготовленности группы можно рассмотреть решение уравнений вида a sin mx +b cos mx=с, где а, b,с не равны нулю одновременно.

Упражнения на закрепление:

1. 3sin x + cos x=2;

2. 3sin 2x + cos 2x= 2;

3. sin x/3 + cos x/3=1;

4. 12 sin x +5 cos x+13=0.

3 Решение тригонометрических уравнений

Цель: 1) Изучить метод решения тригонометрических уравнений разложением на множители; научиться решать тригонометрические уравнения с использованием различных тригонометрических формул;

2) Проконтролировать: знание учащимися формул для решения простейших тригонометрических уравнений; умение решать простейшие тригонометрические уравнения.

План занятия:

    Проверка домашнего задания.

    Математический диктант.

    Изучение нового материала.

    Самостоятельная работа.

    Подведение итогов занятия. Домашнее задание.

Ход занятия:

    Проверка домашнего задания (решение тригонометрических уравнений кратко записаны на доске).

    Математический диктант.

В-1

1. Какие уравнения называются простейшими тригонометрическими уравнениями?

2. Как называется уравнение вида a sinx +b cosx=0? Укажите способ его решения.

3.Запишите формулу корней уравнения tgx = a (ctg x=a ).

4. Запишите формулы корней уравнений вида cosx=a , где а =1, а =0, а =-1.

5. Запишите общую формулу корней уравнения sin x=a , | a |

6. Как решаются уравнения вида a cosx=b , | b |

В-2

1. Запишите формулы корней уравнений cosx=a ,| a |

2. Запишите общую формулу корней уравнения

= a , | a |

3. Как называются уравнения вида sin x=a , tgx = a , sin x=a ?

4.Запишите формулы корней уравнения sin x=a , если а =1, а =0, а =-1.

5.Как решаются уравнения вида sin a x=b , | b |

6. Какие уравнения называются однородными уравнениями второй степени? Как они решаются?

    Изучение нового материала.

Метод разложения на множители.

Одним из наиболее употребительных методов решения тригонометрических уравнений является метод разложения на множители.

Если уравнение f(x) =0 можно представить в виде f 1 (x) f 2 (x) =0 , то задача сводится к решению двух уравнений f 1 (x)=0, f 2 (x) =0.

(С учащимися полезно вспомнить правило «Произведение множителей равно нулю, если хотя бы один из множителей равен нулю, а другие при этом имеют смысл »)

    Закрепление изученного материала через решение уравнений различной сложности.

    (sin x-1/2)(sin x+1)=0; 2) (cosx- 2/2)(sin x+ 2/2)=0;(самост.)

3) sin 2 x+ sin x cosx=0; 4) sin 2 x- sin x =0;

5) sin 2x – cosx=0; 6) 4 cos 2 x -1 =0; (2-мя способами)

7) cosx+ cos3x=0; 8) sin 3x= sin 17x;

9) sin x+ sin 2x+ sin 3x=0; 10) cos3x cos5x

11) sin x cos5x =sin 9x cos3x sin 2x sin 2x

12) 3 cosx sin x+ cos 2 x=0(самост.)

13) 2 cos 2 x - sin (x- /2)+ tgx tg (x+/2)=0.

    Самостоятельная работа.

Вариант-1 Вариант-2

1) 6 sin 2 x+ 5sin x -1=0; 1) 3 cos 2 x+2 cosx -5=0;

2) sin 2x – cos2x=0; 2) 3 cos x/2 - sin x/2=0;

3) 5 sin 2 x+ sin x cosx -2 cos 2 х=2; 3) 4sin 2 x- sin x cosx +7cos 2 х=5;

4) sin x+sin5x=sin3x+sin7x; 4) sin x-sin 2x +sin 3x-sin 4x=0;

5) sin x+cosx=1. 5) sin x+cosx=2.

8. Подведение итогов урока. Домашнее задание.

Уравнение cos х = а

Каждый корень уравнения

cos х = а (1)

можно рассматривать как абсциссу некоторой точки пересечения синусоиды у = cos х с прямой у = а , и, наоборот, абсцисса каждой такой точки пересечения является одним из корней уравнения (1).Таким образом, множество всех корней уравнения (1) совпадает с множеством абсцисс всех точек пересечения косинусоиды у = cos х с прямой у = а .

Если | а | >1 , то косинусоида у = cos х не пересекается с прямой у = а .

В этом случае уравнение (1) не имеет корней.

При |а | < 1 получается бесконечно много точек пересечения.

для а > 0

для а < 0.

Все эти точки пересечения мы разобьем на две группы:

A -2 , A - 1 , A 1 , A 2 , ... ,

B -2 , B - 1 , B 1 , B 2 , ... ,

Точка А имеет абсциссу arccos а , а все остальные точки первой группы отстоят от нее на расстояния, кратные 2π

arccos a + 2kπ . (2)

Точка В , как легко понять из рисунков, имеет абсциссу - arccos а , а все остальные точки второй группы удалены от нее на расстояния, кратные 2π . Поэтому их абсциссы выражаются как

arccos а + 2n π . (3)

Таким образом, уравнение (1) имеет две группы корней, определяемых формулами (2) и (3). Hо эти две формулы можно, очевидно, записать в виде одной формулы

х = ± arccos a + 2mπ , (4)

где m пробегает все целые числа (m = 0, ±1, ±2, ±3, ...).

Те рассуждения, которые мы проводили при выводе этой формулы, верны лишь при
| a | =/= 1. Однако формально соотношение (4) определяет все корни уравнения cos x=a и при |а | =1. (Докажите это!) Поэтому можно сказать, что формула (4) дает все корни уравнения (1) при любых значениях а , если только |а | < 1 .

Но все же в трех частных случаях (а = 0, а = -1, а = +1) мы рекомендуем не обращаться к формуле (4) , а пользоваться другими соотношениями. Полезно запомнить, что корни уравнения cos х = 0 задаются формулой

х = π / 2 +nπ ; (5)

корни уравнения cos х = -1 задаются формулой

х = π + 2mπ ; (6)

и, наконец, корни уравнения cos х = 1 задаются формулой

х = 2mπ ; (7)

В заключение отметим, что формулы (4) , (5), (6) и (7) верны лишь в предположении, что искомый угол х выражен в радианах. Если же он выражен в градусах, то эти формулы нужно естественным образом изменить. Так, формулу (4) следует заменить формулой

х = ± arccos a + 360° n,

формулу (5) формулой

х = 90° + 180° n и т. д.

Вы можете заказать подробное решение вашей задачи !!!

Равенство, содержащее неизвестную под знаком тригонометрической функции (`sin x, cos x, tg x` или `ctg x`), называется тригонометрическим уравнением, именно их формулы мы и рассмотрим дальше.

Простейшими называются уравнения `sin x=a, cos x=a, tg x=a, ctg x=a`, где `x` — угол, который нужно найти, `a` — любое число. Запишем для каждого из них формулы корней.

1. Уравнение `sin x=a`.

При `|a|>1` не имеет решений.

При `|a| \leq 1` имеет бесконечное число решений.

Формула корней: `x=(-1)^n arcsin a + \pi n, n \in Z`

2. Уравнение `cos x=a`

При `|a|>1` — как и в случае с синусом, решений среди действительных чисел не имеет.

При `|a| \leq 1` имеет бесконечное множество решений.

Формула корней: `x=\pm arccos a + 2\pi n, n \in Z`

Частные случаи для синуса и косинуса в графиках.

3. Уравнение `tg x=a`

Имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arctg a + \pi n, n \in Z`

4. Уравнение `ctg x=a`

Также имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arcctg a + \pi n, n \in Z`

Формулы корней тригонометрических уравнений в таблице

Для синуса:
Для косинуса:
Для тангенса и котангенса:
Формулы решения уравнений, содержащих обратные тригонометрические функции:

Методы решения тригонометрических уравнений

Решение любого тригонометрического уравнения состоит из двух этапов:

  • с помощью преобразовать его до простейшего;
  • решить полученное простейшее уравнение, используя выше написанные формулы корней и таблицы.

Рассмотрим на примерах основные методы решения.

Алгебраический метод.

В этом методе делается замена переменной и ее подстановка в равенство.

Пример. Решить уравнение: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 — x)+1=0`

`2cos^2(x+\frac \pi 6)-3cos(x+\frac \pi 6)+1=0`,

делаем замену: `cos(x+\frac \pi 6)=y`, тогда `2y^2-3y+1=0`,

находим корни: `y_1=1, y_2=1/2`, откуда следуют два случая:

1. `cos(x+\frac \pi 6)=1`, `x+\frac \pi 6=2\pi n`, `x_1=-\frac \pi 6+2\pi n`.

2. `cos(x+\frac \pi 6)=1/2`, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Ответ: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Разложение на множители.

Пример. Решить уравнение: `sin x+cos x=1`.

Решение. Перенесем влево все члены равенства: `sin x+cos x-1=0`. Используя , преобразуем и разложим на множители левую часть:

`sin x — 2sin^2 x/2=0`,

`2sin x/2 cos x/2-2sin^2 x/2=0`,

`2sin x/2 (cos x/2-sin x/2)=0`,

  1. `sin x/2 =0`, `x/2 =\pi n`, `x_1=2\pi n`.
  2. `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ \pi n`, `x/2=\pi/4+ \pi n`, `x_2=\pi/2+ 2\pi n`.

Ответ: `x_1=2\pi n`, `x_2=\pi/2+ 2\pi n`.

Приведение к однородному уравнению

Вначале нужно данное тригонометрическое уравнение привести к одному из двух видов:

`a sin x+b cos x=0` (однородное уравнение первой степени) или `a sin^2 x + b sin x cos x +c cos^2 x=0` (однородное уравнение второй степени).

Потом разделить обе части на `cos x \ne 0` — для первого случая, и на `cos^2 x \ne 0` — для второго. Получим уравнения относительно `tg x`: `a tg x+b=0` и `a tg^2 x + b tg x +c =0`, которые нужно решить известными способами.

Пример. Решить уравнение: `2 sin^2 x+sin x cos x — cos^2 x=1`.

Решение. Запишем правую часть, как `1=sin^2 x+cos^2 x`:

`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,

`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`

`sin^2 x+sin x cos x — 2 cos^2 x=0`.

Это однородное тригонометрическое уравнение второй степени, разделим его левую и правую части на `cos^2 x \ne 0`, получим:

`\frac {sin^2 x}{cos^2 x}+\frac{sin x cos x}{cos^2 x} — \frac{2 cos^2 x}{cos^2 x}=0`

`tg^2 x+tg x — 2=0`. Введем замену `tg x=t`, в результате `t^2 + t — 2=0`. Корни этого уравнения: `t_1=-2` и `t_2=1`. Тогда:

  1. `tg x=-2`, `x_1=arctg (-2)+\pi n`, `n \in Z`
  2. `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, ` n \in Z`.

Ответ. `x_1=arctg (-2)+\pi n`, `n \in Z`, `x_2=\pi/4+\pi n`, `n \in Z`.

Переход к половинному углу

Пример. Решить уравнение: `11 sin x — 2 cos x = 10`.

Решение. Применим формулы двойного угла, в результате: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x/2+10 cos^2 x/2`

`4 tg^2 x/2 — 11 tg x/2 +6=0`

Применив описанный выше алгебраический метод, получим:

  1. `tg x/2=2`, `x_1=2 arctg 2+2\pi n`, `n \in Z`,
  2. `tg x/2=3/4`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Ответ. `x_1=2 arctg 2+2\pi n, n \in Z`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Введение вспомогательного угла

В тригонометрическом уравнении `a sin x + b cos x =c`, где a,b,c — коэффициенты, а x — переменная, разделим обе части на `sqrt {a^2+b^2}`:

`\frac a{sqrt {a^2+b^2}} sin x +` `\frac b{sqrt {a^2+b^2}} cos x =` `\frac c{sqrt {a^2+b^2}}`.

Коэффициенты в левой части имеют свойства синуса и косинуса, а именно сумма их квадратов равна 1 и их модули не больше 1. Обозначим их следующим образом: `\frac a{sqrt {a^2+b^2}}=cos \varphi`, ` \frac b{sqrt {a^2+b^2}} =sin \varphi`, `\frac c{sqrt {a^2+b^2}}=C`, тогда:

`cos \varphi sin x + sin \varphi cos x =C`.

Подробнее рассмотрим на следующем примере:

Пример. Решить уравнение: `3 sin x+4 cos x=2`.

Решение. Разделим обе части равенства на `sqrt {3^2+4^2}`, получим:

`\frac {3 sin x} {sqrt {3^2+4^2}}+` `\frac{4 cos x}{sqrt {3^2+4^2}}=` `\frac 2{sqrt {3^2+4^2}}`

`3/5 sin x+4/5 cos x=2/5`.

Обозначим `3/5 = cos \varphi` , `4/5=sin \varphi`. Так как `sin \varphi>0`, `cos \varphi>0`, то в качестве вспомогательного угла возьмем `\varphi=arcsin 4/5`. Тогда наше равенство запишем в виде:

`cos \varphi sin x+sin \varphi cos x=2/5`

Применив формулу суммы углов для синуса, запишем наше равенство в следующем виде:

`sin (x+\varphi)=2/5`,

`x+\varphi=(-1)^n arcsin 2/5+ \pi n`, `n \in Z`,

`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Ответ. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Дробно-рациональные тригонометрические уравнения

Это равенства с дробями, в числителях и знаменателях которых есть тригонометрические функции.

Пример. Решить уравнение. `\frac {sin x}{1+cos x}=1-cos x`.

Решение. Умножим и разделим правую часть равенства на `(1+cos x)`. В результате получим:

`\frac {sin x}{1+cos x}=` `\frac {(1-cos x)(1+cos x)}{1+cos x}`

`\frac {sin x}{1+cos x}=` `\frac {1-cos^2 x}{1+cos x}`

`\frac {sin x}{1+cos x}=` `\frac {sin^2 x}{1+cos x}`

`\frac {sin x}{1+cos x}-` `\frac {sin^2 x}{1+cos x}=0`

`\frac {sin x-sin^2 x}{1+cos x}=0`

Учитывая, что знаменатель равным быть нулю не может, получим `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \in Z`.

Приравняем к нулю числитель дроби: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тогда `sin x=0` или `1-sin x=0`.

  1. `sin x=0`, `x=\pi n`, `n \in Z`
  2. `1-sin x=0`, `sin x=-1`, `x=\pi /2+2\pi n, n \in Z`.

Учитывая, что ` x \ne \pi+2\pi n, n \in Z`, решениями будут `x=2\pi n, n \in Z` и `x=\pi /2+2\pi n`, `n \in Z`.

Ответ. `x=2\pi n`, `n \in Z`, `x=\pi /2+2\pi n`, `n \in Z`.

Тригонометрия, и тригонометрические уравнения в частности, применяются почти во всех сферах геометрии, физики, инженерии. Начинается изучение в 10 классе, обязательно присутствуют задания на ЕГЭ, поэтому постарайтесь запомнить все формулы тригонометрических уравнений — они вам точно пригодятся!

Впрочем, даже запоминать их не нужно, главное понять суть, и уметь вывести. Это не так и сложно, как кажется. Убедитесь сами, просмотрев видео.

Простейшими тригонометрическими уравнениями называют уравнения

Cos (x) = a, sin (x) = a, tg (x) = a, ctg (x) =a

Уравнение cos (x) = a

Объяснение и обоснование

  1. Корни уравнения cosx = а. При | a | > 1 уравнение не имеет корней, по-скольку | cosx | < 1 для любого x (прямая y = а при а > 1 или при а < -1 не пересекает график функцииy = cosx).

Пусть | а | < 1. Тогда прямая у = а пересекает график функции

у = cos х. На промежутке функция y = cos x убы-вает от 1 до -1. Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение cos x = а имеет на этом промежутке только один корень, который по опреде-лению арккосинуса равен: x 1 = arccos а (и для этого корня cos x = а).

Косинус — четная функция, поэтому на промежутке [-п; 0] уравнение cos x = а также имеет только один корень — число, противоположное x 1 , то есть

x 2 = -arccos а.

Таким образом, на промежутке [-п; п] (длиной 2п) уравнение cos x = а при | а | < 1 имеет только корни x = ±arccos а.

Функция y = cos x периодическая с периодом 2п, поэтому все остальные корни отличаются от найденных на 2пп (n € Z). Получаем следующую фор-мулу корней уравнения cos x = а при

x = ±arccos а + 2пп, n £ Z.

  1. Частные случаи решения уравнения cosx = а.

Полезно помнить специальные записи корней уравнения cos x = а при

а = 0, а = -1, а = 1, которые можно легко получить, используя как ори-ентир единичную окружность.

Поскольку косинус равен абсциссе соответствующей точки единичной окружности, получаем, что cos x = 0 тогда и только тогда, когда соответ-ствующей точкой единичной окружности является точка A или точка B.

Аналогично cos x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C, следовательно,

x = 2πп, k € Z.

Также cos х = —1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка D, таким образом, х = п + 2пn,

Уравнение sin (x) = a

Объяснение и обоснование

  1. Корни уравнения sinx = а. При | а | > 1 уравнение не имеет корней, по-скольку | sinx | < 1 для любого x (прямая y = а на рисунке при а > 1 или при а < -1 не пересекает график функции y = sinx).