Все о тюнинге авто

Свойства числовых функций. Урок «Функции и их свойства Обобщение темы числовые функции и их свойства

Обладают многими свойствами:


1. Функция называется монотонной на некотором промежутке А, если она на этом промежутке возрастает или убывает


2. Функция называется возрастающей на некотором промежутке А, если для любых чисел их множества А выполняется условие:.


График возрастающей функции обладает особенностью: при движении вдоль оси абсцисс слева направо по промежутку А ординаты точек графика увеличиваются (рис. 4).


3. Функция называется убывающей на некотором промежутке А , если для любых чисел их множества А выполняется условие:.


График убывающей функции обладает особенностью: при движении вдоль оси абсцисс слева направо по промежутку А ординаты точек графика уменьшаются (рис. 4).


4. Функция называется четной на некотором множестве Х, если выполняется условие:.


График четной функции симметричен относительно оси ординат (рис. 2).


5. Функция называется нечетной на некотором множестве Х, если выполняется условие:.


График нечетной функции симметричен относительно начала координат (рис. 2).


6. Если функция у = f(x)
f(x) f(x) ,то говорят, что функция у = f(x) принимает наименьшее значение у = f(x) при х = x (рис. 2, функция принимает наименьшее значение в точке с координатами (0;0)).


7. Если функция у = f(x) определена на множестве Х и существует такое , что для любого справедливо неравенство f(x) f(x) ,то говорят, что функция у = f(x) принимает наибольшее значение у = f(x) при х = x (рис. 4, функция не имеет наибольшего и наименьшего значений).


Если для данной функции у = f(x) изучены все перечисленные свойства, то говорят, что проведено исследование функции.

Это соответствие, при котором каждому элементу х из множества D по некоторому правилу сопоставляется определенное число у, зависящее от х. Обозначение: y = f(x) х у Независимая переменная или аргумент зависимая переменная или значение функции D(f) E(f) Область определения функции Область значения функции Числовая функция с областью определения D





Чётность функции Функция y=f(x), называется чётной, если для любого значения х из области определения выполняется равенство f(-x)=f(x). Функция y=f(x), называется нечётной, если для любого значения х из области определения выполняется равенство f(-x)=-f(x).



Монотонность функции (Возрастание и убывание функции) Функцию у=f(x) называют возрастающей на множестве Х є D(f), если для любых точек х 1 и х 2 множества Х таких, что х 1 f(x 2) f(x 2)">




Как построить график периодической функции Если функция у=f(x) имеет период Т, то для построения графика функции нужно сначала построить ветвь (волну, часть) графика на любом промежутке длины Т, а затем сдвинуть эту ветвь по оси х вправо и влево на Т, 2Т, 3Т и т. д.


Ограниченность функции Функцию y=f(x) называют ограниченной снизу на множестве Х є D(f), если все значения этой функции на множестве Х больше некоторого числа. (т.е. если существует число m такое, что для любого значения х є Х выполняется неравенство: f(x) > m. Функцию y=f(x) называют ограниченной сверху на множестве Х є D(f), если все значения этой функции на множестве Х меньше некоторого числа. (т.е. если существует число M такое, что для любого значения х є Х выполняется неравенство: f(x) m. Функцию y=f(x) называют ограниченной сверху на множестве Х є D(f), если все значения этой функции на множестве Х меньше некоторого числа. (т.е. если существует число M такое, что для любого значения х є Х выполняется неравенство: f(x)


Наибольшее и наименьшее значение функции Число m называют наименьшим значением функции у=f(x) на множестве Х є D(f), если: 1) существует точка х o є Х такая, что f(х o)=m; 2) Для любого значения х є Х выполняется неравенство f(x)f(x o) Число M называют наибольшим значением функции у=f(x) на множестве Х є D(f), если: 1) существует точка х o є Х такая, что f(х o)=M; 2) Для любого значения х є Х выполняется неравенство f(x)f(x o)




Выпуклость функции Функция выпукла вверх на промежутке X с Dif), если, соединив любые две точки ее графика с абсциссами из X отрезком, мы обнаружим, что соответствую­щая часть графика лежит выше проведенного отрезка. Считается, что функция выпукла вниз на промежутке X с D(f), если, соединив любые две точки ее графика с абсциссами из X отрезком, мы обнаружим, что соответствующая часть графика лежит ниже проведенного отрезка


Непрерывность функции непрерывность функции на промежутке X означает, что график функции на данном промежутке не имеет точек разрыва (т. е. представляет собой сплошную линию). Замечание. На самом деле о непрерывности функции можно говорить только тогда, когда доказано, что функция является непрерывной. Но соответствующее определение сложное и нам пока не по силам (мы дадим его позднее, в § 26). То же самое можно сказать и о понятии выпуклости. Поэтому, обсуждая указанные два свойства функций, будем пока по-прежнему опираться на наглядно-интуитивные представления.


Точки экстремумов и экстремум функции. Точки максимума и минимума функции называют точками экстремума функции. Определение. Точка x 0 называется точкой минимума функции f, если для всех x из некоторой окрестности x 0 выполняется неравенство f(x) f(x 0). Определение. Точка x 0 называется точкой максимума функции f, если для всех x из некоторой окрестности x 0 выполняется неравенство f(x) f(x 0).


Схема исследования функции 1 - Область определения 2 - четность (нечетность) 3 - наименьший положительный период 4 - промежутки возрастания и убывания 5 – точки экстремумов и экстремумы функции 6 – ограниченность функции 7 – непрерывность функции 8 - наибольшее и наименьшее значение функции 9 - Область значений 10 –выпуклость функции

ОБОБЩАЮЩИЙ УРОК ПО ТЕМЕ «ФУНКЦИИ И ИХ СВОЙСТВА».

Цели урока :

Методическая: повышение активно-познавательной деятельности учащихся путем проведения индивидуально-самостоятельной работы и применения тестовых заданий развивающего типа.

Обучающая: повторить элементарные функции, их основные свойства и графики. Ввести понятие взаимно-обратных функций. Систематизировать знания учащихся по теме; способствовать закреплению умений и навыков в вычислении логарифмов, в применении их свойств при решении заданий нестандартного типа; повторить построение графиков функций с помощью преобразований и проверить навыки и умения при самостоятельном решении упражнений.

Воспитательная: воспитание аккуратности, собранности, ответственности, умения принимать самостоятельные решения.

Развивающая: развивать интеллектуальные способности, мыслительные операции, речь, память. Развивать любовь и интерес к математике; в ходе урока обеспечить развитие у учащихся самостоятельности мышления в учебной деятельности.

Тип урока: обобщение и систематизация.

Оборудование: доска, компьютер, проектор, экран, учебная литература.

Эпиграф урока: “Математику уже затем учить надо, что она ум в порядок приводит”.

(М.В. Ломоносов).

ХОД УРОКА

Проверка домашнего задания.

Повторение показательной и логарифмической функций с основанием а = 2, построение их графиков в одной координатной плоскости, анализ их взаимного расположения. Рассмотреть взаимозависимость между основными свойствами этих функций (ООФ и ОЗФ). Дать понятие взаимно-обратных функций.

Рассмотреть показательную и логарифмическую функции с основанием а = ½ с

целью убедиться в соблюдении взаимозависимости перечисленных свойств и для

убывающих взаимно-обратных функций.

Организация самостоятельной работы тестового типа на развитие мыслительной

операции систематизации по теме «Функции и их свойства».

СВОЙСТВА ФУНКЦИЙ:

1). у = ‌│х│ ;

2). Возрастает на всей области определения;

3). ООФ: (- ∞; + ∞) ;

4). у = sin x ;

5). Убывает при 0 < а < 1 ;

6). у = х ³ ;

7). ОЗФ: (0; + ∞) ;

8). Функция общего вида;

9). у = √ х;

10). ООФ: (0; + ∞) ;

11). Убывает на всей области определения;

12). у = кх + в;

13). ОЗФ: (- ∞; + ∞) ;

14). Возрастает при к > 0 ;

15). ООФ: (- ∞; 0) ; (0; + ∞) ;

16). у = cos x ;

17). Не имеет точек экстремума;

18). ОЗФ: (- ∞; 0) ; (0; + ∞) ;

19). Убывает при к < 0 ;

20). у = х ² ;

21). ООФ: х ≠ πn ;

22). у = к/х;

23). Четная;

25). Убывает при к > 0 ;

26). ООФ: [ 0; + ∞) ;

27). у = tg x ;

28). Возрастает при к < 0;

29). ОЗФ: [ 0; + ∞) ;

30). Нечетная;

31). у = log x ;

32). ООФ: х ≠ πn/2 ;

33). у = ctg x ;

34). Возрастает при а > 1.

Во время этой работы осуществлять опрос учащихся по индивидуальным заданиям:

№1. а) Построить график функции

б) Построить график функции

№2. а) Вычислить:

б) Вычислить:

№3. а) Упростить выражение
и найти его значение при

б) Упростить выражение
и найти его значение при
.

Домашнее задание: №1. Вычислить: а)
;

в)
;

г)
.

№2. Найти область определения функции: а)
;

в)
; г)
.

Уроки 1-2. Определение числовой функции и способы ее задания

09.07.2015 11705 0

Цель: обсудить определение функции, способы ее задания.

I. Сообщение темы и цели уроков

II. Повторение материала 9 класса

Различные аспекты этой темы уже рассматривались в 7-9 классах. Теперь необходимо расширить и обобщить сведения о функциях. Напомним, что тема является одной из важнейших для всего курса математики. Различные функции будут изучаться вплоть до окончания школы и далее в высших учебных заведениях. Данная тема вплотную связана с решением уравнений, неравенств, текстовыми задачами, прогрессиями и т. д.

Определение 1. Пусть даны два множества действительных чисел D и Е и указан закон f по которому каждому числу х ∈ D ставится в соответствие единственное числом y ∈ Е (см. рисунок). Тогда говорят, что задана функция у = f (x ) или у(х) с областью определения (О.О.) D и областью изменения (О.И.) Е. При этом величину х называют независимой переменной (или аргументом функции), величину у - зависимой переменной (или значением функции).

Область определения функции f обозначают D (f ). Множество, состоящее из всех чисел f (x ) (область значений функции f ), обозначают E (f ).

Пример 1

Рассмотрим функцию Для нахождения у для каждого значения х необходимо выполнить следующие операции: из величины х вычесть число 2 (х - 2), извлечь квадратный корень из этого выражения и, наконец, прибавить число 3 Совокупность этих операций (или закон, по которому для каждого значения х ищется величина у) и называется функцией у(х). Например, для х = 6 находим Таким образом, для вычисления функции у в данной точке х необходимо подставить эту величину х в данную функцию у(х).

Очевидно, что для данной функции для любого допустимого числа х можно найти только одно значение у (т. е. каждому значению х соответствует одно значение у).

Рассмотрим теперь область определения и область изменения этой функции. Извлечь квадратный корень из выражения (х - 2) можно, только если эта величина неотрицательная, т. е. х - 2 ≥ 0 или х ≥ 2. Находим Так как по определению арифметического корня то прибавим ко всем частям этого неравенства число 3, получим: или 3 ≤ у < +∞. Находим

В математике часто используются рациональные функции. При этом функции вида f (x ) = р(х) (где р(х) - многочлен) называют целыми рациональными функциями. Функции вида (где р(х) и q (x ) - многочлены) называют дробно-рациональными функциями. Очевидно, дробь определена, если знаменатель q (x ) не обращается в нуль. Поэтому область определения дробно-рациональной функции - множество всех действительных чисел, из которого исключены корни многочлена q (x ).

Пример 2

Рациональная функция определена при х - 2 ≠ 0, т. е. x ≠ 2. Поэтому область определения данной функции - множество всех не равных 2 действительных чисел, т. е. объединение интервалов (-∞; 2) и (2; ∞).

Напомним, что объединением множеств А и В называется множество, состоящее из всех элементов, входящих хотя бы в одно из множеств А или В. Объединение множеств А к В обозначается символом А U В. Так, объединением отрезков и (3; 9) является промежуток (непересекающиеся промежутки) обозначают .

Возвращаясь к примеру, можно записать: Так как при всех допустимых значениях х дробь не обращается в нуль, то функция f (x ) принимает все значения, кроме 3. Поэтому

Пример 3

Найдем область определения дробно-рациональной функции

Знаменатели дробей обращаются в нуль при х = 2, х = 1 и х = -3. Поэтому область определения данной функции

Пример 4

Зависимость уже не является функцией. Действительно, если мы хотим вычислить значение у, например, для х = 1, то, пользуясь верхней формулой, найдем: у = 2 · 1 - 3 = -1, а пользуясь нижней формулой, получим: у = 12 + 1 = 2. Таким образом, одному значению x (x = 1) соответствуют два значения у (у = -1 и у = 2). Поэтому эта зависимость (по определению) не является функцией.

Пример 5

Приведены графики двух зависимостей y (x ). Определим, какая из них является функцией.


На рис. а приведен график функции, так как любой точке x 0 соответствует только одно значение у0. На рис. б приведен график какой- то зависимости (но не функции), так как существуют такие точки (например, x 0 ), которым отвечает более одного значения у (например, у1 и у2).

Рассмотрим теперь основные способы задания функций.

1) Аналитический (с помощью формулы или формул).

Пример 6

Рассмотрим функции:

Несмотря на непривычную форму, это соотношение также задает функцию. Для любого значения х легко найти величину у. Например, для х = -0,37 (так как х < 0, то пользуясь верхним выражением), получаем: у(-0,37) = -0,37. Для х = 2/3 (так как х > 0, то пользуемся нижним выражением) имеем: Из способа нахождения у понятно, что любой величине х отвечает только одно значение у.

в) 3х + у = 2у - х2. Выразим из этого соотношения величину у: 3х + х2 = 2у - у или х2 + 3х = у. Таким образом, это соотношение также задает функцию у = х2 + 3х.

2) Табличный

Пример 7

Выпишем таблицу квадратов у для чисел х.

2,25

6,25

Данные таблицы также задают функцию - для каждого (приведенного в таблице) значения х можно найти единственное значение у. Например, у(1,5) = 2,25, y (5) = 25 и т. д.

3) Графический

В прямоугольной системе координат для изображения функциональной зависимости у(х) удобно пользоваться специальным рисунком - графиком функции.

Определение 2. Графиком функции y (x ) называют множество всех точек системы координат, абсциссы которых равны значениям независимой переменной х, а ординаты - соответствующим значениям зависимой переменной у.

В силу такого определения все пары точек (х0, у0), которые удовлетворяют функциональной зависимости у(х), расположены на графике функции. Любые другие пары точек, не удовлетворяющие зависимости y (x ), на графике функции не лежат.

Пример 8

Дана функция Принадлежит ли графику этой функции точка с координатами: а) (-2; -6); б) (-3; -10)?

1. Найдем значение функции у при Так как у(-2) = -6, то точка А (-2; -6) принадлежит графику данной функции.

2. Определим значение функции у при Так как y (-3) = -11, то точка В (-3; -10) не принадлежит графику этой функции.

По данному графику функции у = f (x ) легко найти область определения D (f ) и область значений E (f ) функции. Для этого точки графика проецируют на оси координат. Тогда абсциссы этих точек образуют область определения D (f ), ординаты - область значений E (f ).

Сравним различные способы задания функции. Наиболее полным следует считать аналитический способ. Он позволяет составить таблицу значений функции для некоторых значений аргументов, построить график функции, провести необходимое исследование функции. Вместе с тем табличный способ позволяет быстро и легко найти значение функции для некоторых значений аргумента. График функции наглядно показывает ее поведение. Поэтому противопоставлять различные способы задания функции не следует каждый из них имеет свои преимущества и свои недостатки. На практике используются все три способа задания функции.

Пример 9

Дана функция у = 2х2 - 3х +1.

Найдем: а) y (2); б) y (-3х); в) у(х + 1).

Для того чтобы найти значение функции при каком-то значении аргумента, необходимо подставить это значение аргумента в аналитический вид функции. Поэтому получим:

Пример 10

Известно, что у(3 - х) = 2х2 - 4. Найдем: а) y (x ); б) у(-2).

а) Обозначим буквой z = 3-х, тогда х = 3 - z . Подставим это значение х в аналитический вид данной функции у(3 - х) = 2х2 - 4 и получим: y (3 - (3 - z )) = 2 · (3 - z )2 - 4, или y (z ) = 2 · (3 - z )2 - 4, или y (z ) = 2 · (9 - 6 z + z 2 ) - 4, или y (z ) = 2х2 - 12 z + 14. Так как безразлично, какой буквой обозначен аргумент функции - z , х, t или любой другой, то сразу получим: у(х) = 2х2 - 12х + 14;

б) Теперь легко найти у(-2) = 2 · (-2)2 - 12 · (-2) + 14 = 8 + 24 + 14 = 46.

Пример 11

Известно, что Найдем х(у).

Обозначим буквой z = x - 2, тогда х = z + 2, и запишем условие задачи: или To же условие запишем для аргумента (- z ): Для удобства введем новые переменные a = y (z ) и b = y (- z ). Для таких переменных получим систему линейных уравнений

Нас интересует неизвестная a .

Для ее нахождения используем способ алгебраического сложения. Поэтому умножим первое уравнение на число (-2), второе уравнение - на число 3. Получим:

Сложим эти уравнения: откуда Так как аргумент функции можно обозначать любой буквой, то имеем:

В заключение заметим, что к концу 9 класса были изучены свойства и графики:

а) линейной функции у = кх + m (график - прямая линия);

б) квадратичной функции у = ах2 + b х + с (график - парабола);

в) дробно-линейной функции (график - гипербола), в частности функции

г) степенной функции у = ха (в частности, функции

д) функции у = |х|.

Для дальнейшего изучения материала рекомендуем повторить свойства и графики указанных функций. На следующих занятиях будут рассмотрены основные способы преобразования графиков.

1. Дайте определение числовой функции.

2. Расскажите о способах задания функции.

3. Что называется объединением множеств А и B ?

4. Какие функции называются целыми рациональными?

5. Какие функции называются дробно-рациональными? Как находится область определения таких функций?

6. Что называют графиком функции f (х)?

7. Приведите свойства и графики основных функций.

IV. Задание на уроках

§ 1, № 1 (а, г); 2 (в, г); 3 (а, б); 4 (в, г); 5 (а, б); 6 (в); 7 (а, б); 8 (в, г); 10 (a ); 13 (в, г); 16 (а, б); 18.

V. Задание на дом

§ 1, № 1 (б, в); 2 (а, б); 3 (в, г); 4 (а, б); 5 (в, г); 6 (г); 7 (в, г); 8 (а, б); 10 (б); 13 (а, б); 16 (в, г); 19.

VI. Творческие задания

1. Найдите функцию у = f (х), если:


Ответы:


2. Найдите функцию у = f (x ) если:

Ответы:


VII. Подведение итогов уроков