Все о тюнинге авто

Проецирование сил. Проекция силы на ось

Теоретический материал

Связь – это тело, препятствующее перемещению другого тела под действием силы.

Реакция связи – сила, возникающая внутри самой связи. Реакция всегда противоположна тому направлению, по которому связь препятствует движению тела. Все тела могут быть свободными и несвободными. Свободное тело не имеет связи. Любое несвободное тело можно представить свободным, если действующие на него связи заменить реакциями.

Виды связей:

а) Гладкая поверхность или плоскость , то есть поверхность не имеющая трения. Реакция этой связи всегда направлена перпендикулярно точке соприкосновения. R – реакция связи

б) Гладкая опора Реакции этой связи направлены перпендикулярно к точке соприкосновения. (Реакция – сила внутри конструкции). Ее величина зависит от материала, размера и внешней силы.

в) Гибкая связь – связь, работающая только на растяжение, которая осуществляется тросом, канатом, цепью. Реакция гибкой связи направлена по самой связи к точке закрепления, то есть противоположно направлению силы.


г) Жесткие стержни . Осуществляется различными балками, двутаврами, швеллерами. Связь работает как на растяжение, так и на сжатие. Если стержень испытывает растяжение, то реакция направлена по стержню к месту закрепления, если на сжатие, то реакция - за стержень.

д) Шарнирная опора . Опоры бывают подвижные и неподвижные. Неподвижная опора имеет две реакции, расположенные перпендикулярно друг к другу. Подвижная опора имеет одну реакцию, перпендикулярно поверхности.

Подвижная опора Неподвижная опора


Задания для выполнения работы

1. Вычертить рисунки своего варианта.

2. Описать рисунок.

3. Определить вид связи и заменить их реакциями.

Вариант 18

1.
2.
3.

Контрольные вопросы:

1. В чем отличие между осью и проекцией?

2. Сколько уравнений равновесия Вы составляли при решении задачи?

3. Методика решения задач ПССС.



4. Дайте определение плоской системе сходящихся сил.

5. Какой величиной является проекция силы на координатную плоскость?

Литература:

1. Вереин Л.И. Техническая механика – М: Академия, 2006.

2. Мовнин М.С. Основы технической механики – СПБ: Политехника, 2003.

3. Молчанова Е.В., Шурыгина Г.Н. Статика и сопротивление материалов - Томск, 2008.

Практическая работа №2

Тема урока: Определение реакций связи плоской системы сходящихся сил.

Тип урока: закрепление полученных знаний.

Цель урока: Научиться определять реакции связи плоской системы сходящихся сил

Обеспечивающие средства:

1. методическое руководство по выполнению работы;

2. индивидуальное задание;

3. тетрадь для практических работ;

7. калькулятор.

Технология работы:

1.Внимательно изучите методические указания, предложенный теоретический материал.

2.В соответствие с вариантом, выполнить задание по методике представленной ниже.

3.Сделайте выводы о проделанной работе.

4.Ответить на контрольные вопросы.

Теоретический материал

Условия и уравнения равновесия плоской системы произвольно- расположенных сил.

При приведении системы сил к точке получается R гл и М гл.

Если система сил находится в равновесии, то R гл = 0, М гл = 0.

Запишем три вида уравнений равновесия для данной системы.

Первый вид

Аналитический метод решения задач статики основывается на понятии о проекции силы на ось. Проекция силы (как и любого другого вектора) на ось есть алгебраическая величина, равная произведению модуля силы на косинус угла между силой и положительным направлением оси.

Если этот угол острый, - проекция положительна, если тупой, - отрицательна, а если сила перпендикулярна оси, - ее проекция на ось равна нулю. Так, для сил, изображенных на рис. 18,

Проекцией силы F на плоскость называется вектор заключенный между проекциями начала и конца силы F на эту плоскость (рис. 19). Таким образом, в отличие от проекции силы на ось, проекция силы на плоскость есть величина векторная, так как она характеризуется не только своими числовыми значениями, но и направлением в плоскости По модулю где - угол между направлением силы F и ее проекции

В некоторых случаях для нахождения проекции силы на ось удобнее найти сначала ее проекцию на плоскость, в которой эта ось лежит, а затем найденную проекцию на плоскость спроектировать на данную ось. Например, в случае, изображенном на рис. 19, найдем таким способом, что

Аналитический способ задания сил. Для аналитического задания силы необходимо выбрать систему координатных осей Oxyz, по отношению к которой будет определяться направление силы в пространстве.

В механике мы будем пользоваться правой системой координат, т. е. такой системой, в которой кратчайшее совмещение оси с осью происходит, если смотреть с положительного конца оси против хода часовой стрелки (рис. 20).

Вектор, изображающий силу F, можно построить, если известны модуль этой силы и углы , которые сила образует с координатными осями. Таким образом, величины и задают силу F. Точка А приложения силы должна быть задана отдельно ее координатами .

Для решения задач механики удобнее задавать силу ее проекциями на координатные оси. Зная эти проекции, можно определить модуль силы и углы, которые она образует с координатными осями, по формулам:

Если все рассматриваемые силы расположены в одной плоскости, то каждую из сил можно задать ее проекциями на две оси Тогда формулы, определяющие силу по ее проекциям, примут вид:

Аналитический способ сложения сил. Переход от зависимостей между векторами к зависимостям между их проекциями осуществляется с помощью следующей теоремы геометрии: проекция вектора суммы на какую-нибудь ось равна алгебраической сумме проекций слагаемых векторов на ту же ось. Согласно этой теореме, если R есть сумма сил то

Зная по формулам (6) находим:

Формулы (8), (9) и позволяют решить задачу о сложении сил аналитически.

Для сил, расположенных в одной плоскости, соответствующие формулы принимают вид:

Если силы заданы их модулями и углами с осями, то для применения аналитического метода сложения надо предварительно вычислить проекции этих сил на координатные оси.

Сила - это одно из важных понятий в физике. Она является причиной изменения состояния любых объектов. В данной статье рассмотрим, что собой представляет эта величина, какие силы бывают, а также покажем, как находить проекцию силы на ось и на плоскость.

Сила и ее физический смысл

В физике сила - это которая показывает изменение количества движения тела за единицу времени. Данное определение полагает силу динамической характеристикой. С точки зрения же статики сила в физике - это мера упругой или пластической деформации тел.

Международная система СИ выражает силу в ньютонах (Н). Что такое 1 ньютон, проще всего понять на примере второго закона классической механики. Математическая запись его следующая:

Здесь F¯ - некоторая внешняя сила, действующая на тело массой m, и приводящая к ускорению a¯. Из формулы следует количественное определение одного ньютона: 1 Н - это такая сила, которая приводит к изменению скорости тела массой 1 кг на 1 м/с за каждую секунду.

Примерами динамического проявления силы являются ускорение автомобиля или свободно падающего тела в гравитационном земном поле.

Статическое проявление силы, как было отмечено, связано с явлениями деформации. Здесь следует привести следующие формулы:

Первое выражение связывает силу F с давлением P, которое она оказывает на некоторую площадку S. Через эту формулу 1 Н можно определить как давление в 1 паскаль, прилагаемое к площадке 1 м 2 . Например, столб атмосферного воздуха на уровне моря давит на площадку 1 м 2 с силой 10 5 Н!

Второе выражение является классической формой записи закона Гука. Например, растяжение или сжатие пружины на линейную величину x приводит к возникновению противодействующей силы F (в выражении k - коэффициент пропорциональности).

Какие силы бывают

Выше уже было показано, что силы могут быть статические и динамические. Здесь скажем, что помимо этой их особенности, они могут быть силами контакта или дальнодействующие. Например, сила трения, - это контактные силы. Причина их появления заключается в справедливости принципа Паули. Последний гласит, что два электрона не могут занимать одно и то же состояние. Именно поэтому прикосновение двух атомов приводит к их отталкиванию.

Дальнодействующие силы появляются в результате взаимодействия тел через некоторое поле-носитель. Например, такими являются сила гравитации или электромагнитное взаимодействие. Обе силы имеют бесконечный радиус действия, однако, их интенсивность падает, как квадрат расстояния (законы Кулона и всемирного тяготения).

Сила - векторная величина

Разобравшись со смыслом рассматриваемой физической величины, можно перейти к изучению вопроса проекции силы на ось. В первую очередь заметим, что данная величина является векторной, то есть она характеризуется модулем и направлением. Покажем, как рассчитывать модуль силы и ее направление.

Известно, что любой вектор можно задать однозначно в данной системе координат, если известны значения координат его начала и конца. Предположим, что имеется некоторый направленный отрезок MN¯. Тогда его направление и модуль можно определить с помощью следующих выражений:

MN¯ = (x 2 -x 1 ; y 2 -y 1 ; z 2 -z 1);

|MN¯| = √((x 2 -x 1) 2 + (y 2 -y 1) 2 + (z 2 -z 1) 2).

Здесь координаты с индексами 2 соответствуют точке N, с индексами 1 - точке M. Вектор MN¯ направлен из M в N.

Для общности мы показали, как находить модуль и координаты (направление) вектора в трехмерном пространстве. Аналогичные формулы без третьей координаты справедливы для случая на плоскости.

Таким образом, модуль силы - это ее абсолютная величина, выраженная в ньютонах. С точки зрения геометрии, модуль - это длина направленного отрезка.

Что такое проекция силы на ось?

Речь о проекциях направленных отрезков на координатные оси и плоскости удобнее всего вести, если предварительно расположить соответствующий вектор в начале координат, то есть в точке (0; 0; 0). Предположим, что у нас имеется некоторый вектор силы F¯. Поместим его начало в точку (0; 0; 0), тогда координаты вектора можно записать так:

F¯ = ((x 1 - 0); (y 1 - 0); (z 1 - 0)) = (x 1 ; y 1 ; z 1).

Вектор F¯ показывает направление силы в пространстве в данной координатной системе. Теперь проведем перпендикулярные отрезки из конца F¯ к каждой из осей. Расстояние от точки пересечения перпендикуляра с соответствующей осью до начала координат называется проекцией силы на ось. Не трудно догадаться, что в случае с силой F¯ ее проекции на оси x, y и z будут равны x 1 , y 1 и z 1 , соответственно. Заметим, что эти координаты показывают модули проекций силы (длину отрезков).

Углы между силой и ее проекциями на координатные оси

Вычисление этих углов не является сложной задачей. Все, что требуется для ее решения, - это знание свойств тригонометрических функций и умение применять теорему Пифагора.

Например, определим угол между направлением силы и ее проекцией на ось x. Соответствующий прямоугольный треугольник будет образован гипотенузой (вектор F¯) и катетом (отрезок x 1). Второй катет - это дистанция от конца вектора F¯ до оси x. Угол α между F¯ и осью x вычисляется по формуле:

α = arccos(|x 1 |/|F¯|) = arccos(x 1 /√(x 1 2 +y 1 2 +z 1 2)).

Как видим, для определения угла между осью и вектором необходимо и достаточно знать координаты конца направленного отрезка.

Для углов с другими осями (y и z) можно записать аналогичные выражения:

β = arccos(|y 1 |/|F¯|) = arccos(y 1 /√(x 1 2 +y 1 2 +z 1 2));

γ = arccos(|z 1 |/|F¯|) = arccos(z 1 /√(x 1 2 +y 1 2 +z 1 2)).

Заметим, что во всех формулах стоят модули в числители, что исключает появление тупых углов. Между силой и ее осевыми проекциями углы всегда меньше или равны 90 o .

Сила и ее проекции на плоскости координат

Определение проекции силы на плоскость не отличается от такового для оси, только в данном случае перпендикуляр следует опускать не на ось, а на плоскость.

В случае пространственной прямоугольной системы координат мы имеем три взаимно перпендикулярные плоскости xy (горизонтальная), yz (фронтальная вертикальная), xz (боковая вертикальная). Точки пересечения опущенных из конца вектора перпендикуляров к названным плоскостям равны:

(x 1 ; y 1 ; 0) для xy;

(x 1 ; 0 ; z 1) для xz;

(0 ; y 1 ; z 1) для zy.

Если каждую из отмеченных точек соединить с началом координат, то мы получим проекцию силы F¯ на соответствующую плоскость. Чему равен модуль силы, мы знаем. Чтобы найти модуль каждой проекции, необходимо применить теорему Пифагора. Обозначим проекции на плоскости как F xy , F xz и F zy . Тогда для их модулей будут справедливы равенства:

F xy = √(x 1 2 +y 1 2);

F xz = √(x 1 2 + z 1 2);

F zy = √(y 1 2 + z 1 2).

Углы между проекциями на плоскость и вектором силы

В пункте выше были приведены формулы для модулей проекций на плоскость рассматриваемого вектора F¯. Эти проекции вместе с отрезком F¯ и расстоянием от его конца до плоскости образуют прямоугольные треугольники. Поэтому, как и в случае с проекциями на ось, можно воспользоваться определением тригонометрических функций, чтобы вычислить рассматриваемые углы. Можно записать следующие равенства:

α = arccos(F xy /|F¯|) = arccos(√(x 1 2 +y 1 2) /√(x 1 2 +y 1 2 +z 1 2));

β = arccos(F xz /|F¯|) = arccos(√(x 1 2 +z 1 2)/√(x 1 2 +y 1 2 +z 1 2));

γ = arccos(F zy /|F¯|) = arccos(√(y 1 2 +z 1 2)/√(x 1 2 +y 1 2 +z 1 2)).

Важно понимать, что угол между направлением силы F¯ и соответствующей ее проекцией на плоскость равен углу между F¯ и этой плоскостью. Если рассматривать эту задачу с точки зрения геометрии, то можно сказать, что направленный отрезок F¯ является наклонной по отношению к плоскостям xy, xz и zy.

Где используются проекции сил?

Приведенные формулы для проекций силы на оси координат и на плоскости представляют не только теоретический интерес. Они часто используются при решении физических задач. Сам процесс нахождения проекций называется разложением силы на ее составляющие. Последние представляют собой вектора, сумма которых должна дать исходный вектор силы. В общем случае можно разложить силу на произвольные составляющие, однако, для решения задач удобно пользоваться именно проекциями на перпендикулярные оси и плоскости.

Задачи, где применяются понятие проекций сил, могут быть самыми разными. Например, тот же второй закон Ньютона предполагает, что внешняя сила F¯, действующая на тело, должна быть направлена так же, как вектор скорости v¯. Если их направления различаются на некоторый угол тогда, чтобы равенство оставалось справедливым, подставлять в него следует уже не саму силу F¯, а ее проекцию на направление v¯.

Задача на определение проекций силы на плоскости и на оси координат

Предположим, что имеется некоторая сила F¯, которая представлена вектором, имеющим следующие координаты конца и начала:

Необходимо определить модуль силы, а также все ее проекции на координатные оси и плоскости и углы между F¯ и каждой ее проекцией.

Начнем решать задачу с вычисления координат вектора F¯. Имеем:

F¯ = (-1; 4; -1) - (2; 0; 1) = (-3; 4; -2).

Тогда модуль силы будет равен:

|F¯| = √(9 + 16 + 4) = √29 ≈ 5,385 Н.

Проекции на оси координат равны соответствующим координатам вектора F¯. Рассчитаем углы между ними и направлением F¯. Имеем:

α = arccos(|-3 |/5,385) ≈ 56,14 o ;

β = arccos(|4|/5,385) ≈ 42,03 o ;

γ = arccos(|-2|/5,385) ≈ 68,20 o .

Поскольку координаты вектора F¯ известны, можно рассчитать модули проекций силы на плоскости координат. Пользуясь приведенными выше формулами, получаем:

F xy = √(9 +16) = 5 Н;

F xz = √(9 + 4) = 3,606 Н;

F zy = √(16 + 4) = 4,472 Н.

Наконец, остается вычислить углы между найденными проекциями на плоскость и вектором силы. Имеем:

α = arccos(F xy /|F¯|) = arccos(5/5,385) ≈ 21,8 o ;

β = arccos(F xz /|F¯|) = arccos(3,606/5,385) ≈ 48,0 o ;

γ = arccos(F zy /|F¯|) = arccos(4,472/5,385) ≈ 33,9 o .

Таким образом, вектор F¯ ближе всего наклонен к координатной плоскости xy.

Задача со скользящим бруском по наклонной плоскости

Теперь решим физическую задачу, где необходимо будет применить концепцию проекции силы. Пусть дана деревянная наклонная плоскость. Угол ее наклона к горизонту равен 45 o . На плоскости находится деревянный брусок, имеющий массу 3 кг. Необходимо определить, с каким ускорением будет перемещаться этот брусок по плоскости вниз, если известно, что коэффициент трения скольжения равен 0,7.

Для начала составим тела. Поскольку на него будут действовать всего две силы (проекция силы тяжести на плоскость и сила трения), то уравнение примет вид:

F g - F f = m*a =>

a = (F g - F f)/m.

Здесь F g , F f - проекция силы тяжести и сила трения, соответственно. То есть задача сводится к вычислению их значений.

Поскольку угол, под которым плоскость наклонена к горизонту, равен 45 o , то несложно показать, что проекция силы тяжести F g вдоль поверхности плоскости будет равна:

F g = m*g*sin(45 o) = 3*9,81/√2 ≈ 20,81 Н.

Эта проекция силы стремится вывести из состояния покоя деревянный брусок и придать ему ускорение.

Согласно определению, сила трения скольжения равна:

Где μ = 0,7 (см. условие задачи). Сила реакции опоры N равна проекции силы тяжести на ось, перпендикулярную наклонной плоскости, то есть:

Тогда сила трения равна:

F f = μ*m*g*cos(45 o) = 0,7*3*9,81/√2 ≈ 14,57 Н.

Подставляем найденные силы в уравнение движения, получаем:

a = (F g - F f)/m = (20,81 - 14,57)/3 = 2,08 м/с 2 .

Таким образом, брусок будет спускаться по наклонной плоскости, увеличивая за каждую секунду свою скорость на 2,08 м/с.

Часто геометрическое сложение векторов сил требует сложных и громоздких построений. В таких случаях прибегают к другому методу, где геометрическое построе­ние заменен о вычислениями скалярных величин. Дости­гается это проектированием заданных сил на оси прямо­угольной системы координат.

Как известнее из математики, осью называют неограни­ченную прямую линию , которой приписано определенное направление . Проекция вектора на ось является скаляр­ной величиной, которая определяется отрезком оси , отсе­каемым перпендикулярами , опущенными из начала и конца вектора на ось.

Проекция вектора считается положительной (+ ), если направление от начала проекции к ее концу совпадает с положительным направлением оси. Проекция вектора считается отрицательной (- ), если направление от на­чала проекции к ее концу противоположно положитель­ному направлению оси.

Рассмотрим ряд случаев проектирования сил на ось .

  1. Дана сила Р (рис.а ), она лежит в одной пло­скости с осью х . Вектор силы составляет с положительным направлением оси острый угол α .

Чтобы найти величину проекции , из начала и конца вектора силы опускаем перпендикуляры на ось х, полу­чаем

Р х = ab = Р cos α .

Проекция вектора в данном случае положительна .

2. Дана сила Q (рис. б ), которая лежит в одной плоскости с осью х , но ее вектор составляет с положи­тельным направлением оси тупой угол α .

Проекция силы Q на ось х

Q х = ab = Q cos α,

cos a = - cos β .

Так как α > 90° , то cos cos α - отрицательная величина. Выразив cos α через cos β (β - острый угол), оконча­тельно получим

Q х = - Q cos β

В этом случае проекция силы отрицательна .

Итак, проекция силы на ось координат равна произве­дению модуля силы на косинус угла между вектором силы и положительным направлением оси .

При определении проекции вектора силы на ось поль­зуются обычно косинусом острого угла, независимо от того, с каким направлением оси - положительным или отрицательным - он образо­ван. Знак проекции легче устанавливать непосредствен­но по чертежу.

Силу, расположенную на плоскости хОу , можно спроек­тировать на две координатные оси Ох и Оу . Рассмотрим рисунок.

На нем изображена сила Р и ее проекции Р х и Р у . Ввиду того что проекции образуют между собой прямой угол, из прямоугольного треугольника ABC следует:

а аналитическим условием равновесия, которое основано на методе проекций.

Проекцией силы на ось называется отрезок оси, заключенный между двумя перпендикулярами, опущенными на ось из начала и конца вектора силы.

Пусть даны координатные оси х, у, сила Р, приложенная в точке А и расположенная в плоскости координатных осей (рис. 2.3).

Проекциями силы Р на оси будут отрезки аЬ и а"Ь". Обозначим этн проекции соответственно Р„и Р„. Тогда

Р„= Р со я а; Р„= Р я п а.

Проекция силы на ось есть величина алгебраическая, которая может быть положительной или отрицательной, что устанавливается по направлению проекции. За направление проекции примем направление от проекции начала к проекции конца вектора силы.

Установим следующее правило знаков:

если направление проекции силы на ось совпадает с положительным направление.м оси, то эта проекция считается положительной, и наоборот.

Если вектор силы параллелен оси, то он проецируется на эту ось в натуральную величину (рис. 2.3, сила Г).

Если вектор силы перпендикулярен оси, то его проекция на эту ось равна нулю (рис. 2.3, сила Я).

Зная две проекции Р„и Р„, из треугольника АВС определяем модуль и направление вектора силы Р по следующим формулам:

модуль силы

направляющий тангенс угла между вектором силы

Р и осью х

Отметим, что силу Р можно представить как равнодействующую двух составляющих сил Р„и Р., параллельных осям координат (рис. 2.3). Составляющие Р„и Р„и проекции Р„ и Рх принципиально отличны друг от друга, так как составляющая есть величина векторная, а проекция величина алгебраическая; но проекции силы на две взаимно перпендикулярные оси х и у и модули составляющих той же силы соответственно численно равны, когда сила разлагается по двум взаимно перпендикулярным направлениям, параллельным осям х и у.

$2.4. Аналитический способ определения

равнодействующей плоской системы сходящихся сил

Пусть дана плоская система п сходящихся сил

Равнодействующая этой системы

В плоскости действия данной системы выберем ось координат и спроецируем данные силы и их равнодействующую на эту ось.

Из математики известно свойство проекции векторной суммы, на основании которого можно утверждать, что проекция равнодействующей на ось равна алгебраической сумме проекций составляющих сил на ту же ось, т. е.

Правую часть этого равенства записываем упрощенно,

а именно:

Для того чтобы определить равнодействующую любой плоской системы сходящихся сил, спроецируем их на оси координат х и у, алгебраически сложим проекции всех сил и найдем, таким образом, проекции равнодействующей.